
Parallel WZ Factorization on Mesh Multiprocessors

R. Asenjo
M. Ujaldon
E.L. Zapata

September 1993
Technical Report No: UMA-DAC-93/07

Published in:
J. Microprocessing and Microprogramming
vol. 38, no. 5, 1993, pp. 319-326

University of Malaga
Department of Computer Architecture
C. Tecnologico • PO Box 4114 • E-29080 Malaga • Spain

PARALLEL WZ FACTORIZATION ON MESH MULTIPROCESSORS*

R. Asenjo, M. Ujaldón and E.L. Zapata

Dept. Arquitectura de Computadores, University of Málaga, Plaza El Ejido. 29013 Málaga. SPAIN.

Abstract. We present a parallel algorithm for the QIF (Quadrant Interlocking Factorization) method, which solves
linear equation systems using WZ factorization. The parallel algorithm we developed is general in the sense that it
does not impose any restrictions on the size of the problem and that it is independent from the dimensions of the
mesh. The result is an efficient algorithm using half the messages of the equivalent parallel LU algorithm. Finally,
we have compared the QIF algorithm in multiprocessor architectures with mesh topology and hypercube topology,
obtaining similar calculation times for both architectures. This last aspect confirms the communication redundancy
of the hypercube topology, which raises hardware costs without any significant improvement in the efficiency of the
algorithms.

1. Sequential QIF algorithm

The solution of a linear equation system is a
problem which arises in many situations, whether
scientific (simulations, solution of differential
equation systems), economic (resource assignment,
econometric models in general) and engineering
(passive electronic circuits), etc.

The QIF (Quadrant Interlocking Factorization)
algorithm, introduced by Evans and Hatzopoulos in
1979 [EvHa79], is a numerical method for finding a
solution for systems of the type Ax=b, where A is
a non singular matrix of dimensions (N×N), x is an
unknown column vector, and b is the independent
term vector provided. The QIF method is based on
the WZ factorization of the system matrix, A = WZ.
The main advantage of this factorization is that it
presents a complexity order half of the one in the LU
decomposition, due to the fact that it performs the
simultaneous evaluation of two columns or two rows.
A detailed description of this algorithm can be found
in [EvHa79], [EvHa80], [EHN81], [Evan82] and
[Hatz82]. We will just summarize its basic steps.

Matrices W and Z into which we are going to
factor matrix A, are:

*This work was supported by the Ministry of Education and
Science (CICYT) of Spain underproject TIC-92-0942

where the elements of W and Z are:

(1)

(2)

The elements of W and Z can be evaluated in n
steps, 0 ≤ k < n, where n = (N-1)/2. In the k-th step
we obtain rows k and N-k-1 of matrix Z, and
columns k and N-k-1 of W. In each step, the
elements of Z are evaluated according to the
following equation:

(3)

In order to obtain the elements of W we will have
to solve the following linear systems (2×2):

After step k, we must update, in preparation for

(4)

the next step, the rows of A. In order to do this we
need the elements of Z and W that were calculated in
step k.

(5)

After the WZ factorization, the next step consists
in obtaining the solution vector x. For this, we first
solve systems Wy=b and then system Zx=y. Vector
y is evaluated in n steps, and components yk, yN-k-1 are
produced in the k-th step,

(6)

and the rest of the elements of vector b are updated
as a preparation for the following step:

(7)

Finally, for obtaining vector x, we solve Zx=y,
taking into account two cases; N even or N odd. If N
is odd, we first obtain the central element of vector
x,

(8)

update the rest of vector y and continue with the next
stage:

(9)

The rest of the elements of vector x are obtained
in k steps, n < k ≤ 0, by solving the linear systems (2
× 2) where elements xk and xN-k-1 are computed:

(10)

Vector y is updated before starting the next iteration,

(11)

If N is even, all the components of vector x are
obtained in pairs by solving linear system (10) and
updating the vector according to equation (11).

The QIF algorithm for solving the linear system
Ax=b can thus be implemented by means of the
following procedures:

void QIF() /* Solves the system Ax=b */
{

1 WZ; /* A=WZ */
2 vector_y; /* Wy=b */
3 if ((N%2)!=0) {
4 central_element;
5 vector_x (n); } /* Zx=y */
6 else vector_x (n+1);

}

We first carry out the decomposition of matrix A
into the two matrices W and Z. The elements of these
two matrices are defined in equations (1) and (2).
The elements which are not 0 or 1 are obtained by
means of equations (3), (4) and (5). In order to
obtain vector y we solve the system Wy=b using
equations (6) and (7). When obtaining vector x we
consider two cases: if the dimension of matrix A is
odd, we first calculate the central element and update
the rest of vector y by means of equations (8) and
(9), and then obtain the rest of the elements of x by
means of equations (10) and (11). The number of
times equations (10) and (11) are evaluated is n+1
for N even, and n for N odd.

Finally, the numerical stability of the method can
be improved by introducing one of the two possible
pivoting strategies, partial pivoting or complete
pivoting [KaSc87], [HaEv88].

2. Parallel QIF algorithm

A mesh is a two dimensional array of processing
elements (PEs). In a generic mesh with X×Y PEs
(X≥1, Y≥1), each one of them is connected by means
of its channels N, S, E, and W to its four neighboring
PEs, except the border processors which only use 3
channels and the 4 corner PEs which only use 2. The
index assigned to each processor is a function of its
position (i,j) in the mesh (0≤i<X, 0≤j<Y) and is
given by the following formula: PE=j X+i.

The basic operation for the conversion of
sequential algorithms into parallel algorithms is the
fragmentation of the nested loops so that different
iterations are processed in different processors. This
implies that the variables participating in the
algorithms must be distributed among the processors.
The distribution must be carried out so as to permit
the solution of problems whose sizes are not related
to the dimensions of the mesh.

The method we have followed for the
partition/projection of the algorithms onto a mesh is
similar to the one developed by Zapata et al.
[ZRP90][Rive90] for hypercubes and consists in the
following steps: 1) Analysis of the sequential
algorithm at the loop level, detecting data and control
dependencies. The maximum number of independent
nested loops (do all) defines the number of
dimensions in the algorithmic space. 2) If we find a

single parallelizable loop, the whole mesh will be
associated to it. If the dimension of the algorithmic
space is two, the columns of the mesh will be
assigned to one loop and the rows to the other. In
any other case, (dimension higher than two) we
project the two loops from which we extract the
most parallelism, minimize communications and
maintain a good load balance onto the mesh. The rest
of the loops are sequentialized. 3) Distribution
among the PEs of the variables participating the
algorithm according to the indexing mode and the
type of distribution chosen. 4) Design of the parallel
algorithm. 5) Optimization of the algorithm through
the iteration of steps 2 and 3.

In step 2 we have chosen the parallelization of 2
loops and the sequentialization of the rest, increasing
data redundance, but reducing the communication
load. A similar simplification was adopted by Gupta
and Banerjee [GuBa92]. To limit the number of
dimensions to two does not usually imply a loss of
effective parallelism, and on the other hand, most
real scientific algorithm have less than three
dimensions.

2.1 Data distribution and broadcasting

The sequential QIF algorithm is divided into two
parts: WZ factorization of matrix A, and solution of
the system WZx = b. The second part is structured in
two stages, solution of system Wy=b and solution of
Zx=y.

In the description of the QIF algorithm an
inherent dependence between the iterations can be
observed. In iteration k, the evaluation of columns k
and N-k-1 of W and of rows k and N-k-1 of Z,
equations (3) and (4), require updating matrix A in
the previous iteration (k-1) by means of equation (5).
This dependence will hinder the parallelization of the
QIF algorithm. The maximum number of
independent loops is two, (2-partition) and for a
generic mesh of X×Y PEs, the rows of the mesh, X,
will be associated to the rows of the matrices, and
the columns, Y, of the mesh to the columns of the
matrices.

On the other hand, we can save memory and
accelerate the calculation process by means of an in
place implementation of the algorithm. Initially,
matrix Z stores matrix A and vector y contains the
components of vector b. This way, equations (3) and
(6) will not have to be evaluated, and the process of
updating matrix A, equation (5), and vector b,
equation (7), will be carried out directly in matrix Z
and in vector y, respectively.

In solving the system WZx=b, we find two nested
loops corresponding to the index of the iteration and
the number of elements in vectors x and b. The first

one of these loops is not parallelizable as there is an
inherent dependence in the calculation of the
elements of x (after each iteration the rest of vector
b must be updated using equation (7)). In this first
part we could use a 1-partition of the mesh, but this
would force us to introduce a massive routing stage
for changing the partition when the factorization of
A has ended. In order to avoid this partition change,
we maintain the 2-partition associating the elements
of vectors x and y to the rows of the mesh, X. With
this partition we introduce redundancy in the
distribution of x and y in the local memories of the
PEs of the mesh.

The number of PEs assigned to each dimension
are Q0 and Q1, with the limitations given by 0<Q0≤X
and 0<Q1≤Y. The 2-partition permits the
representation of the index r of each processing
element in the mesh, PE(r), by means of a vector (r1,
r0), with r=r1 Q0+r0 where r1 and r0 indicate the
column and row in which PE(r) is located in the
mesh. Thus, r0 is associated to the rows of W and Z
as well as to vectors x and y, whereas r1 is associated
to the columns of W and Z.

The calculation of the determinant, necessary for
solving the systems (2×2) of equations (4) and (10),
requires carrying out operations with elements of Z
that are specularly symmetric with respect to the
central axis of the matrix. In order to eliminate an
excessive information exchange in this operation, it
is convenient to store these elements in the same PE.
To do this we use folded matrices. The folding
consists in transforming matrix Ai j into matrix Zi

m
j

(the algorithm is in place and matrix Z initially
contains matrix A), representing with the third index,
0≤m≤3, those elements which are specularly
symmetric in the four quadrants of the original
matrix :

(12)

This way we convert matrix A(N,N) into matrix
Z(N/2, N/2, 4). The transformation reduces the
diffusion time of specularly symmetric data. Matrix
W will also be folded and converted into three-
dimensions, using the same process as for Z. We will
also transform vector b(N) into a matrix y(N/2, 2) so
that

(13)

obtaining the solution of the system in matrix
x(N/2,2).

As we have stored in the same PE elements
which are specularly symmetric with respect to the

central axis of matrix A, the loops associated with
the third index, m, will be completely executed by
each processor without any need for communications.

According to these considerations, each PE(r1,
r0) will store two local submatrices LZ(r0, r1, 4) and
LW(r0, r1, 4) of dimensions (n0×n1×4) and two local
vectors LY(r0, 2) and LX(r0, 2) of dimensions (n0×2),
where

(14)

If we analyze the sequential algorithm we observe
a high level of locality in the operations to be carried
out. For this reason, we will adopt a cyclic scheme
for the distribution of the variables and a pure binary
indexing for the PEs. The distribution of the
elements is as follows:

(a) Elements Zi
m
j and Wi

m
j are stored in position

(i/Q0 , j/Q1 , m) of the local
submatrices LZ and LW, respectively, in
those processors with r0=(i mod Q0) and
r1=(j mod Q1).

(b) Elements Yi
m and Xi

m are stored in position
(i/Q0 , m) of the local subvectors LY and
LX respectively, in all the PEs with r0=(i
mod Q0) and 0≤r1<Q1.

This data distribution scheme will make
interprocessor communications necessary. For this
algorithm, the communications needed are the
broadcasting of a message stored by a PE to the rest
of the column, X Broadcasting, to the rest of the
row, Y Broadcasting , or to the rest of the mesh, XY
Broadcasting.

2.2 Parallel QIF

2.2.1 Parallel WZ factorization

We will use the SCMD (Single Code Multiple
Data) programming model. The parallel algorithm
executed by each processor for the WZ factorization
of matrix A can be written as follows:

void WZ()
{

L1. for (k=0; k<n; k++)
{

L2. Calculation of the local indices corresponding
to element (k,k): s=k/Q0, t=k/Q1.

L3. Ca lcu la t ion of the de te rminan t :
det=LZi

0
j LZi

3
j-LZi

1
j LZi

2
j

L4. X broadcasting of det and of row k in Z
L5. for (i=(k+1)/Q0; i<n0; i++)
L6. Calculation of column LWm[i][t] eq (4)
L7. Y broadcasting of column k in W

L8. for (i=(k+1)/Q0; i<n0; i++)
L9. for (j=(k+1)/Q1; j<n1; j++)
L10. { Update LZm[i][j] } eq (5)

}
}

The structure of the sequential algorithm is
maintained, but the number of iterations in each loop
is given by the dimensions of the local matrices LZ
and LW. In each iteration of the non parallelizable
loop (line L1) two rows of Z and two columns of W
are calculated, and the elements of matrix A, are
updated. The calculation of the columns of W,
equation (4), is carried out in lines L3-L6. Line L3
calculates the determinant of the system (2×2). After
this, in L4, the determinant and the row of Z that
was updated in the previous iteration are broadcast in
the X direction. These elements will be updated for
the calculation of the columns of W in L6, and for
updating Z, in L10. In L7, columns k and N-k-1 of
W, which have been calculated in this iteration k, are
broadcast to the PEs that will update LZ. This
update is performed by means of lines L8-L10
(equation (5) is used in L10).

A graphic representation of the parallelism

Fig. 1 Parallelism in the different phases of the QIF
algorithm: a) WZ; b) Wy=b; c) and d) Zx=y.

extracted for the WZ algorithm, which is executed in
two steps can be seen in figure 1 (a). In the first step
(1 in the figure) the determinant and the row of Z
are broadcast. After the calculation of the column of
W, in the second step (2 in the figure), it is broadcast
to the submatrix of Z for updating purposes. This
scheme is iterated for the next k in the already
updated submatrix of Z.

2.2.2 Parallel solution of linear systems

The code we now present solves the system
Wy=b.

void vector_y()

{
L1. for (k=0; k<n; k++) {
L2. Calculation of s and t.
L3. X broadcast of LYm[s]
L4. for (i=(k+1)/Q0; i<n0; i++)
L5. { Update LYm[i] } eq (7)
L6. Y broadcast of LY[*][*] }

}

The components k and N-k-1 of vector y, are
obtained in each iteration k of the n iterations
corresponding to the loop of line L1. In L3, The two
components which were updated in the previous
iteration are broadcast in the X direction. With this
information, the rest of vector y is updated in L5
according to equation (7). Finally, in line L6, these
modifications are broadcast in the Y direction to the
PEs of the same row. In figure 1 (b) we present the
broadcasting process (step 1) corresponding to line
L3 and the one corresponding to L6 (step 2), after
updating y.

In the solution of the system Zx=y, two situations
can be discriminated, N even or N odd. If N is odd,
we first obtain the central element xn of vector x;
and then obtain the rest of the elements by pairs in
n iterations. If N is even, all the elements of the
vector are obtained by pairs in n+1 iterations. The
code for calculating the central element of vector x
is shown below.

void Central_element()
{

L1. Calculation of s and t for position (n, n)
L2. Calculation of LX[s][0]=LX[s][1]=yn/znn eq(8)
L3. XY broadcast of LX[s][0]
L4. for (i=0; i<n0; i++)
L5. { Update LYm[i] } eq(9)
L6. Y broadcast of LY[*][*]

}

In line L1, we determine the local coordinates at
which element zn n, used for the calculation of the
central element of x, xn, is stored. The calculation is
carried out in L2 according to equation (8). This
information is broadcast to the whole mesh in order
to update the rest of vector LY in line L5, following
equation (9). The updated vector, y, is broadcast in
the Y direction before going on to the next stage.

Finally, the parallel program for obtaining the rest
of vector x (or the whole vector if N is even) is
shown below.

void Vector_x(p)
{

L1. for (k=p-1; k≥0; k--) {
L2. Calculation of s and t.

L3. Ca lcu la t ion of the de te rminan t :
det=LZi

0
j LZi

3
j-LZi

1
j LZi

2
j

L4. Y broadcast of det and row k of Z
L5. Calculation of LXm[s] eq (10)
L6. X broadcast of LXm[s]
L7. for (i=0; i<n0; i++)
L8. { Update LYm[i] } eq (11)
L9. Y broadcast of LY[*][*]

}
}
Line L3 calculates the determinant of the linear

system (2×2) of equation (10). In L4 this determinant
and row k of Z are broadcast for the calculation of
LX according to equation (10) in line L5. This
information is broadcast in the X direction, L6,
before performing the updating of the rest of vector
y following equation (11) in line L8. The updated
LY vector is broadcast before starting with the next
iteration. In figure 1 (c) the broadcast (step 1)
corresponds to line L4 and L6 to the broadcast (step
2). In figure 1 (d) the broadcast of the updated LY
vector corresponding to L9 can be viewed.

3. Evaluation

The characteristics of the parallel QIF algorithm
are a function of the variables which define the size
of the problem (number of rows and columns of
matrix A, N) and of the dimensions of the mesh,
X×Y. The complexity corresponding to the WZ
factorization is,

(15)

where

(16)

The term (n0 n1) has to do with the local
calculation operations in the PEs and the terms (n1 a)
and (n0 b), with the operations for the exchange of
rows of matrix Z and columns of W, respectively.
The factor N/2 is due to the non parallelizable loop,
which is associated with the number of iterations k,
and the factor of 4 is due to the folding of the
matrix. The second part of the algorithm, solution of
the system for obtaining vector x, which includes
functions vector_y, vector_x and central_element,
has a complexity of:

(17)

where we have terms due to local calculations in the

PEs, (4n1+n0), terms associated with the
communications between PEs, (2b(2n1+n0)+a), and a
factor of N/2 associated with the number of
iterations.

The total complexity of the algorithm is the sum
of the complexities associated with the WZ
factorization and solving the linear system. But the
most influential term, specially when the dimension
N of the matrix is large, is the one introduced by the
WZ factorization. This is why the dimensions of the
mesh, X×Y, which lead to the shortest execution
times for the algorithm are those verifying X=Y,
conclusion obtained from the minimization of the
complexity in equation (15). If the complexity
dominating the algorithm was the second part,
equation (17), when we minimized it we would reach
the conclusion that we would be interested in X>Y.
In fact, if we have 8 PEs, the algorithm is faster on
a 4×2 mesh then on a 2×4 mesh.

Another interesting feature that can be inferred
from equation (15) is that the algorithmic complexity
of the parallel algorithm becomes the algorithmic
complexity of the sequential algorithm (O[N3/2])
when we consider a 1×1 (Q0=1 and Q1=1 and
therefore a=b=0) mesh.

With respect to the data distribution after folding
the matrix, we have used a cyclic distribution. This
distribution balances the load better, but it penalizes
communications in the sense that the broadcasts must
be global to the whole column. If we had
implemented a consecutive distribution scheme we
would have unbalanced the load, but we would have
also minimized communications as the broadcasts
would be partial. For example, the broadcast to the
whole column would not be necessary, this broadcast
would be in one direction, up or down, but not in
both. This last distribution scheme dynamically frees
PEs during execution, and for this reason can be
interesting in multi user environments.

Another one of the methods used for solving
linear systems is Gaussian Elimination which is
based on the LU factorization of the system matrix.
Zapata et al. [RDBZP90] parallelized the LU
factorization for hypercube computers. The
complexities of the LU and WZ parallel algorithms
are compared in [GMBZ90], where it is concluded
that for large N the ratio between the WZ/LU
complexities is the same for parallel algorithms and
their sequential counterparts, 1/2.

In table I we present the execution times (in
seconds) of the QIF algorithm proposed in this work
for different matrix sizes, N, and different mesh
sizes, X×Y. In figure 2 we show the efficiency
calculated for these times. It can be observed that the
efficiency increase as the size of the problem (N)
increases with respect to the dimensions of the mesh

(X×Y). This behavior is due to the fact that the
number of communication operations grows less
rapidly with the size of the problem than the number
of local computations. It can be observed that the
efficiency comes close to its optimum value, 1, when
N X Y that is, when the local operations

predominate over the communication instructions.
Finally, in figure 3 we can see a comparison

between the execution times of the parallel
algorithms for the two topologies, hypercube and
mesh. We have considered the following partitions
({(hypercube),mesh}): {(2,2),4×4}, {(2,1),4×2} y
{(1,1),2×2}. It can be observed how the execution
time in the mesh topology is approximately the same
(slightly shorter) as in the hypercube. This is justified
because the broadcasting time in the mesh is longer
than in the hypercube, but the indexing time in the
mesh is shorter. However, for large sizes of the
mesh, the broadcasting time will grow significantly,
whereas the indexing time will decrease, so we can
assume that the execution time in the mesh will be
longer than in the hypercube. When this happens we
can use a toroidal topology so that the broadcasting
does not penalize the process so much. As a
conclusion we can say that computers with mesh
topology are advantageous with respect to hypercube
computers as they represent lower hardware cost and
a similar parallel performance.

Table I Execution times of QIF algorithm (sizes N) on several meshes (PEs).

N//PE 4×4 4×2 2×2 2×1 1×1

100 0,608 0,795 1,275 2,134 3,967

200 3,002 4,760 8,535 15,484 29,843

300 8,847 14,957 27,042 50,565 99,197

400 18,734 32,244 60,163 118,190 234,782

500 35,476 61,865 115,136 220,738 457,067

600 56,721 103,680 203,771 393,301 787,107

700 88,642 163,667 322,451 625,067 1246,92

800 133,938 245,787 479,279 920,418 1857,21

900 192,274 350,050 679,823 1318,254 2545,067

1000 245,170 474,768 921,190 1796,703 3506,754

Fig 2. Efficiency (E) versus number of PEs for different
size of the matrix.

Fig. 3 Processing times of mesh and hypercube.

References
[Evan82] D.J. Evans, Parallel numerical algorithms for linear

systems, in: Parallel Processing Systems, D.J. Evans,
Ed. (Cambridge University Press, 1982) 357-383.

[EvHa79] D.J. Evans and M. Hatzopoulos, A parallel linear
system solver, Internat. J. Comput. Math. Sect. B 7
(1979) 227-238.

[EvHa80] D.J. Evans and A. Hadjidimos, A modification of the
Quadrant Interlocking Factorization Parallel Method,
Internat. J. Comput. Math. Sect. B 8 (1980) 149-166.

[EHN81] D.J. Evans, A. Hadjidimos and D. Noutsos, The
parallel solution of banded linear equation by the
new Quadrant Interlocking Factorization (Q.I.F.)
Method, Internat. J. Comput. Math. Sect. B 9 (1981)
151-161.

[GMBZ90] I. García, J.J. Merelo, J.D. Brugera and E.L. Zapata,
Parallel quadrant interlocking factorization on
hypercube computers, J. Parallel Comput. 15 (1990)
87-110.

[GuBa92] M. Gupta and P. Banerjee, Demostration of

Automatic Data Partitionig Techniques fo Parallelizing
Compilers on Multicomputers, IEEE Trans. on Parallel
and Distr. Systems, 3 (2) (1992) 179-193.

[HaEv88] M. Hatzopoulos and D.J. Evans, Comments on the
paper "A short proof for the existence of the WZ-
factorization, J. Parallel Comput. 6 (1988) 259.

[Hatz82] M. Hatzopoulos, Parallel linear solvers for tridiagonal
systems, in: Parallel Processing Systems, D.J. Evans,
Ed. (Cambirdge University Press, 1982) 384-393.

[KaSc87] M. Kaps and M. Schlegl, A short proof for the
existence of the WZ-factorization, J. Parallel Comput.
4 (1987) 229-232.

[Rive90] F.F. Rivera, Partición y proyección de algoritmos en
computadores hipercubo: Reconocimiento de formas,

Ph.D. Thesis (in Spanish), Fac. of Phisics, Univ. of
Santiago de compostela, Spain, 1990.

[ZRP90] E.L. Zapata, F.F. Rivera and O.G. Plata, On the
partition of algorithms into hypercubes, in: Advances
on Parallel Computing, D.J. Evans, Ed. (JAI Press,
1990) 149-171.

