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Abstract

The filtered backprojection algorithm is a popular

method for the reconstruction of n-dimensional

signals from their (n-1) dimensional projections. In

this work we will treat the particular problem of the

three dimensional reconstruction of a 3D object from

2D images. The parallel algorithm we develop is

general in the sense that it does not impose any

restrictions on the size of the problem and is not

dependent on the dimensions of the mesh. We have

also compared this algorithm in multiprocessor

architectures with hypercube and mesh

arrangements, obtaining similar computation times.

This last aspect indicates that the hypercube

increases the hardware cost with no significant

improvement in the efficiency of the algorithms.

1: Sequential algorithm.

The foundation on which all three dimensional

reconstruction techniques are based was originally

developed by Radon in 1917 [1]. He analyzed what is now

known as the Randon Transform and its inverse.

Currently, three dimensional macromolecule

reconstruction algorithms can be grouped into two large

sets: On one hand we find the series expansion methods,

among which ART (Algebraic Reconstruction Technique)

and its many variants stand out. On the other we have
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reconstruction methods based on a discrete version of the

inverse Radon transform.

In this work we will concentrate on this second approach,

and, in particular, on the convoluted backprojection or the

filtered backprojection algorithm.

Our filtered backprojection algorithm will use a random

conic geometry. This way, each image will be taken with an

azimuthal angle Φ to the Z axis and an inclination angle Θ

with respect to the Y axis.

The rotation matrix corresponding to this geometry will

give us the relationship between the (X, Y, Z) coordinates

of the object with respect to its geometric center and the

corresponding coordinates (xp,yp) in each of the projections.

This transformation is described by the following equation:

(xp,yp) = [A] * (X, Y, Z)T (1)

where [A] = DΘ*DΦ , being DΘ and DΦ the rotation

matrices of image p with respect to the Y and Z axis as a

function of the angles Θ and Φ at which the image is taken:

The direct backprojection of each of the images is

obtained by means of the application of matrix [A] to each

point of the three dimensional cube corresponding to the

object as indicated by equation (1), obtaining this way the

2D coordinates in the image for each 3D point. After this

we add its contribution to the 3D point under consideration.

The process is repeated for each of the images.

As a result of (1), we can find two different situations.

The first one happens when the coordinates generated



(xp,yp) are outside the image and consequently, the p-th

coordinate does not contribute to the 3D point of the

object. The second situation occurs when (xp,yp) belongs

to the p-th image. In this case, as xp and yp are generally

real numbers, the intensity associated with these

coordinates is calculated by means of a bilinear

interpolation process of the type of:

where a, b, c, d are the intensities of the image in pixels

(2)a (b a)δx (c a)δy ((d c) (b a))δxδy

(xp,yp),(xp+1,yp),(xp,yp+1) and (xp+1,yp+1) respectively

and δx and δy the fractional parts resulting from eq. (1).

Each image produces a backprojected body [2] which

is a three dimensional cube that uniformly distributes each

image in a direction perpendicular to its projection plane.

In a simple backprojection algorithm, these backprojected

bodies are rotated in space using the inclination and

azimuthal angles of the projections and then they are

added up [3]. The result is a three dimensional

reconstruction that is an approximation to the density of

the object.

Despite all of this, a simple backprojection

reconstruction contains systematic errors. A star effect

appears around the reconstructed points and this effect

increases the density of the reconstructed points. the

reconstruction can be improved using an extended point

function or a transference function in the frequency

domain that can reduce the density of the reconstructed

points by means of an adequate convolution. This leads us

to the filtered backprojection method. We must find an

expression for the extended point function we will denote

as G. A detailed description of how to obtain it can be

found in [4]. Its general expression is the following:

where the asterisk * has been used in order to denote the

(3)
G (X ,Y ,Z )

p
2a sinc(2aπZp)

coordinates of the object in the frequency domain.

The particular filtering functions for each geometry can

be easily derived from expression (3). In particular, for a

random conic geometry such as the one we are using, we

must express the Z coordinate in the objects coordinate

system as the 2 rotations carried out over it for each one of

the p projections. This produces the following final

expression of G for our case:

In order to obtain the correct reconstruction, the Fourier

(4)

transform of the backprojection must be divided by G,

which is equivalent to applying a deconvolution of the

object with the extended point function.

The division by G can be applied to the Fourier transform

of the three dimensional object obtained after the

backprojection or to the Fourier transforms of all the

projections before the backprojection. According to [6],

these two paths are mathematically equivalent. However, the

computation time needed and the quality of the

reconstruction can vary from one solution to the other

depending on the number of data points we consider. If we

use a small number of projections, then an application of the

filter to the projections is more efficient, otherwise it is

better to filter the backprojected object.

Compute the rot. matrix [A] for each image;

for p:= 1 to NumberImages do

Backproject image p onto the object;

Compute 3D-FFT of the reconstructed object;

Filter the object with function G;

Filter the object with low-pass filter;

Compute inverse 3D-FFT.

Figure 1.- Complete algorithm for performing the filtering

operation on the object obtained after backprojection.

As we generally have a large number of projections

available, the best path for achieving a good reconstruction

is three dimensional filtering (see figure 1). It will be the

one we will use here. Nevertheless, our group developed in

[5] a parallel implementation in ACLAN language for a

more detailed study of the other alternative.

The approach chosen presents an additional advantage: It

permits the implementation of a low pass filtering operation



of the object at the same time it is divided by G, saving

costly calculations of the direct and inverse 3D-FFT. This

low pass filter is the final step in the three dimensional

reconstruction process (see figure 1) and it attenuates the

non significant high frequencies present in the calculated

volume. In those applications in which the significant

frequency range cannot be estimated a priori, this process

can only be carried after the volume has been

reconstructed by means of the statistical comparison of

different 3D reconstructions [6]. In the applications we are

concerned with, a simple low pass filter with a radially

symmetric step its falling edge smoothed by a cosine

function provides good results (even though in [7] we

have developed more sophisticated filters that could be

easily implemented).

2: The mesh topology.

A mesh is a two dimensional array of processing

elements (PEs). In a generic mesh with X x Y PEs (X>0,

Y>0), each one of them is connected by means of its N,

S, E and W channels to the four neighboring PEs, except

for the processors on the edges that only use 3 channels

and on the 4 corners that only use 2. The index assigned

to each PE is a function of its position (i,j) in the mesh

(0≤i<X, 0≤j<Y) and is given by the following formula:

PE= j*X+i.

The method we have followed for the partition/

projection of algorithms onto the mesh is similar to the

one developed by Zapata et al. [8][9] for hypercubes. It

consists in the following steps: 1) Loop level analysis of

the sequential algorithm, detecting the data and control

dependencies. The maximum number of independent

nested loops (do all) define the dimensions of the

algorithmic space. 2) Projection onto the mesh of the two

loops which maximize the parallelism, minimize

communications and achieve a good load balance; the rest

of the loops will be sequentiated. 3) Distribution of the

variables participating in the algorithm among the PEs

according to the indexing mode and type of distribution

chosen. 4) Design of the parallel algorithm. 5)

Optimization of the algorithm in steps 2 and 3.

3: Description of the parallel algorithm

3.1: Data distribution.

The sequential algorithm can be divided into three parts:

Direct backprojection of each of the images, filtering of the

three dimensional object (this computation includes the

direct 3D FFT, the calculation of the filtering function and

the inverse 3D FFT) and final low pass filtering.

The first part of the algorithm is given by equations (1)

and (2). In this process there are three independent nested

loops associated with the three dimensions of the object. By

means of a 2 partition of the mesh, each PE analyzes a

single subvolume of the 3D object. The X and Y dimensions

of the object are divided into as many subsets as PEs in the

array in that dimension of the mesh, and dimension Z is

sequentiated. During this process we store the complete

current image in each of the PEs, avoiding this way the

costly interprocessor communications that are necessary for

exchanging image data.

The calculation of the filtering function is carried out by

means of equations (3) and (4). From the analysis of these

equations we can deduce that there are four nested loops

(the there dimensions of the object and the number of

projections). In order to avoid the large number of

communications associated with a partition change, we will

use the same 2 partition we used in the backprojection,

sequencing dimension Z. The fourth loop must also be

sequentiated. This does not reduce the performance of the

algorithm in a significant way because the innermost loop

is a short loop and it allows us to use consecutive storage,

idoneous for the calculation of the transform.

The sequencing of the Z dimension of the object permits

the exploration of the symmetry of the filter in this

dimension, running its associated loop only half of its length

and thus generating a single weight for the two symmetric

coordinates.

The third part of the algorithm is the final low pass

filtering process. In this case there are there independent

nested loops. As before, we parallelize over the mesh the

first two dimensions of the object and we sequentiate the

third.



According to the partition and the data distribution

scheme chosen, the distribution of the object´s matrix (of

dimensions N x N x N) is carried out as follows. Element

(i,j,k) of the object is stored in position (i mod w0, j mod

w1, k) of the local submatrix LOBJ(r0,r1,0) of the PEs

whose indices r0 and r1 are r0 = i/w0 y r1 = j/w1, being w0

= N/X and w1 = N/Y. This way, each PE stores a local

submatrix LOBJ of dimensions w0 x w1 x N.

3.2: Parallel algorithm for filtered backprojection.

We will use the SCMD (Simple Code Multiple Data)

programming model. In figure 2 we present the parallel

algorithm for the backprojection executed by each

processor. This process has 3 nested loops (lines L1, L2

and L3) which go through all the points of the object, and

we parallelize the first two. (xl,yl,zl) and (X,Y,Z) are the

local and global coordinates of the object in each PE, and

(xp,yp) are the coordinates of the p-th projection.

void backprojection

{

L1 for (xl=0;xl<w0;xl++)

L2 for (yl=0;yl<w1;yl++)

L3 for (zl=0;zl<N;zl++)

{

L4 Calculate (X,Y,Z) from (xl,yl,zl)

L5 Calculate (xp,yp) as a function of

(X,Y,Z) applying eq.(1)

L6 Interpolate the value of pixel (xp,yp)

according to eq.(2)

L7 Add the contribution of the pixel to

point (xl,yl,zl)

}

}

Figure 2.- Parallel backprojection algorithm.

The next step is to filter the object obtained after the

backprojection. In figure 3 we present the algorithm that

performs this operation. It has 4 loops (L1, L2, L3 and

L7), and we parallelize the first two. In L7 we assign a

lower boundary to those weights with values that are too

low. Finally, in L8 we filter the coordinate and its

symmetric one in the Z dimension (which, due to the data

distribution scheme chosen will always be in the same PE).

In order to be able to carry out the filtering operation it

is necessary to transform the data to the frequency domain,

that is, calculate the 3D FFT over the data of the object

obtained after the backprojection. This process is divided

into three stages: Bit reversal, which performs a permutation

of the data between the PEs, calculation of the internal

butterflies with the local data of each processor and

calculation of the external butterflies with interprocessor

data. An implementation of these 3 stages is shown in [10].

void 3dfilter()

{

L1 for (xl=0;xl<w0;xl++)

L2 for (yl=0;yl<w1;yl++)

L3 for (zl=0;zl<N/2;zl++)

{

L4 Calculate (X,Y,Z) from

(xl,yl,zl)

L5 for (p=0;p<NumImag;p++)

L6 Calculate the contribution of

image p and add it to function

G(X,Y,Z) according to eq.(4)

L7 G(X,Y,Z)=min(alpha,G(X,Y,Z))

L8 Filter (xl,yl,zl) and

(xl,yl,zl+N/2) with G(X,Y,Z)

}

}

Figure 3.- Parallel algorithm for 3D filter.

We will not calculate the FFT by means of its typical

algorithm. We will use a real transform, the T transform,

defined as follows:

The calculation process of the T transform consists in

the same 3 stages we have already mentioned for the FFT

and it presents the same complexity, however, it has a

double advantage: Significant memory savings, as it does

not have to store the complex part of each of the voxels of



the object (8Mb in the case of a 128x128x128 object) and

a reduction of the computation time, as a complex addition

needs two real operations and a product four. Once the T

transform has been found the FFT is easily obtained by

means of the following expressions:

In the FFT calculation process we find, as before, three

nested loops corresponding to each one of the dimensions

of the object. Out of these we will parallelize the first two

over the two dimensions of the mesh. This produces, for

stages 1 and 3, communications in the mesh as illustrated

in figure 4 for a mesh of X = 4 and Y = 4.

Figure 4.- The four different types of communications

carried out in the 3D FFT algorithm on a 4 x 4 mesh for

nodes 0 and 15.

The algorithm for the final low pass filtering operation

is similar to the one shown in figure 3 and can thus be

obtained in an analogous manner.

4: Evaluation.

The complexity of the complete parallel algorithm is a

function of the number of projections (M), the size of the

object to be reconstructed (N x N x N) and the number of

PEs in each of the dimensions of the mesh (X and Y), as is

shown in this expression:

O[1 + (M x B) + (2 x T) + F + P]

____________________________________________________________

X Y PEs Backpr. Filter using G Low Pass filter

(B) (F) (P)

____________________________________________________________

1 1 1 N3 N3 * M N3

N 1 N N2 N2 * M N2

1 N N N2 N2 * M N2

N N N2 N N * M N

____________________________________________________________

Table I.- Complexity of the parallel filtered backprojection

algorithm for different sizes of the mesh.

B is the complexity of the simple backprojection

algorithm. As there are no interprocessor communications,

the complexity of the backprojection algorithm only depends

on the dimensions of the local volume of each PE:

B = O[w0 x w1 x N]

T is the complexity of the 3D FFT algorithm. The factor

of 2 multiplying T appears as a consequence of having to

perform both the direct and the inverse transform. this

complexity is analyzed in detail in [10].

F is the complexity of the filtering process using function

G. As in the case of the backprojection, the filtering

algorithm using G does not include communications

between processors and consequently its complexity is only

a function of the local dimensions of the object andthe

number of projections:

F = O [M x (w0 x w1 x N)]



N / PE 4 x 4 4 x 2 2 x 2 2 x 1 1 x 1

8 1.643 2.867 5.287 10.067 19.563

16 11.819 21.919 41.413 80.554 158.124

32 91.557 174.104 331.738 649.482 1279.749

64 730.047 1401.952 2639.149 5202.854 10287.19

128 5842.210 11404.85 21099.86 41884.01 83098.69

Table II.- Execution times (in seconds) of the filtered backprojection algorithm on a Transputer network with an

object size of N x N x N over different X x Y meshes using 128 projections.

Finally, P is the complexity of the final low pass

filtering process. This process is similar to the filter using

G, but here the images do not participate and the

complexity only depends on the size of the volume.

P = O [w0 x w1 x N]

Table I presents the complexities of the previous stages

for different dimensions of the mesh and a generic size of

the problem. We have chose partitions that optimize

interprocessor communication times obtaining a behaviour

that is very similar to the optimal one. If the size of the

mesh is the same as the first two dimensions of the object,

the complexity of the algorithm only depends on the

number of images and on the third dimension of the

object, as they are the only loops we do not parallelize.

On the other hand, if the mesh has a single PE, the

complexity of the algorithm is the same as for the case of

a single processor system. In other words, with the

algorithm partition/projection methodology we have used,

the sequential execution is just a particular case of the

parallel algorithm.

It is interesting to point out that in the general

algorithm, the 3 loops which go through the dimensions of

the object have the same range of values. From this

property we can extract the first conclusions on the

performance of the parallel algorithm . This conclusions

have been experimentally verified:

- The result obtained does not depend on the two

dimensions that are parallelized (X and Y, Y and Z or X

and Z).

- If we perform the implementation on a single mesh with

X <> Y, the dimension of the object we parallelize

over the larger dimension of the mesh is not relevant.

We will now analyze the performance of our algorithm

in the mesh topology. In table II we present the execution

times (in seconds) for the filtered backprojection algorithm

developed in this work. As is shown, multiple executions

have been carried out as a function of the size of the object

to be reconstructed and the dimensions of the X x Y mesh.

A fixed value of 128 has been taken for the number of

projections used in the reconstruction process.

Figure 5.- Gain (S) with respect to the size of the object´s

matrix (N) for different mesh sizes.



In figures 5 and 6 we present the gain and the

efficiency corresponding to the times in the table. It can

be observed how both parameters increase when the size

of the problem increases as compared to the dimensions

of the mesh (X x Y). This is because the number of

communication operations grows with size at a slower rate

than the number of local computations, thus reducing the

penalizing factor due to communications. This way, we

can see how the gain approaches its optimal value (X*Y,

equal to the number of PEs). The same happens for the

efficiency (whose optimal value is 1), when N >> X*Y,

this is, when the local operations predominate over

communications.

Figure 6.- Efficiency (E) with respect to the number of

PEs for different sizes of the matrix.

Finally, in figure 7 we include a comparison of the

execution times we have obtained in a hypercube and in

a mesh. In this comparison we have considered the

following partitions ({(hypercube),mesh}): {(2,2),4x4},

{(2,1),4x2} y {(1,1),2x2}.

From the analysis of figure 7 we can conclude that the

execution times are very similar in both topologies, with

a slight improvement in the case of the hypercube. This

happens because the type 2 and type 4 communications

carried out in the FFT algorithm (see figure 4) are direct

in the hypercube, whereas in the case of the mesh they

Figure 7.- Processing times in mesh and hypercube.

need two steps for their implementation. In large meshes,

these communications will be slower as the PEs that need

to communicate are farther away from each other. When

this happens a toroidal distribution can be used so that this

communications do not penalize the process too much. The

rest of the algorithms (see figures 2 and 3), which are the

ones that exhibit greater algorithmic complexity, do not

require communications and present identical behaviors in

both topologies. We can thus conclude that in our parallel

algorithm, the mesh topology is better than the hypercube as

it presents lower hardware cost and similar parallel

performance.
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