
Parallel Sparse LU Factorization

R. Asenjo
M. Ujaldon
E.L. Zapata

December 1994
Technical Report No: UMA-DAC-94/24

Published in:
HPF-2: Scope of Activities and Motivating Applications
High Performance Fortran Forum, 1994, pp. 72-78

University of Malaga
Department of Computer Architecture
C. Tecnologico • PO Box 4114 • E-29080 Malaga • Spain

HPF�� Scope of Activities

and Motivating Applications

High Performance Fortran Forum

November ��� ����

Version ���

Contents

� Executive Summary �

� Justi�cation for New Capabilities �

��� Enhanced Mapping �
����� Irregular Mapping of Arrays �
����� Mapping of Linked Data Structures �
����� Mapping of Derived Type Components �
����� Mapping to Processor Subsets �
����� Processor Views � 	
����� Partial Replication to Processor Subsets � 	

��� Computation Control and Task Parallelism �

����� Computation Mapping ��
����� Reductions and Atomic Operations ��
����� DOACROSS Loops ��
����� Multiple HPF Process Model ��
����� Parallel Sections ��

��� Input�Output ��
����� Transparent Parallel Accesses to Files ��
����� Striping�Distributing Files over Disks ��
����� Out�of�Core and Persistent Arrays ��
����� Checkpointing�Restart �	
����� Asynchronous I�O and Prefetching �	

��� Communication Optimizations �

����� Asserting the Reuse of a Communication Pattern � � � � � � � � � � � � � � � � ��
����� Split�Phase Dereference of Distributed Objects � � � � � � � � � � � � � � � � � ��
����� Locality Assertions ��
����� Distribution Views ��

��� Language Processor Environment ��
����� Language Interoperability ��
����� Tool Support ��

� Justi�cation for Kernel HPF ��

� Motivating Applications ��

��� Barnes�Hut ��
��� ASA � Accessible Surface Area calculation ��
��� Molecular Dynamics MolDyn� ��
��� Non�bonded Force Calculations with Cut�O� ��

i

��� EULER� A Multimaterial� Multidiscipline� ��D Hydrodynamics Code � � � � � � � � � �

��� Multigrid MG� ��
��� Binz � Vortex Dynamics ��
��� DSMC Direct Simulation Monte Carlo� method ��
��	 Sparse Cholesky Factorization ��
���
 Flame Simulation ��
���� Fock Matrix Construction ��
���� FFT� Fast Fourier Transform TASK� �	
���� Narrowband tracking radar ��
���� Multibaseline stereo ��
���� Airshed simulation ��
���� Out�of�Core Matrix Transposition ��
���� FFT� Fast Fourier Transform VIEWAS� ��
���� SpLU � Sparse LU Factorization ��

�

Acknowledgments

This document was edited by Ian Foster� Rob Schreiber and Paul Havlak� Alok Choudhary� James
Cowie� Ian Foster� Paul Havlak� Chuck Koelbel� Piyush Mehrotra� Andy Meltzer� and Rob Schreiber
contributed sections� Gail Pieper provided editorial assistance� Many members of the HPF Forum
contributed the applications� as noted for each of them in Section ��

�

Section �

Executive Summary

This document presents issues recommended by the HPF Forum for consideration under the HPF��
e�ort� After this summary� it comprises three parts� a set of proposed new capabilities� a proposal
for a Kernel HPF�an o�cial subset designed for particularly high performance�and a set of
applications motivating the new capabilities�

The proposed new capabilities are grouped into general areas� as follows�

Enhanced Mapping�

�� Irregular mapping of arrays	 Arbitrary� user�speci�ed mapping of array elements to mem�
bers of abstract processor arrangements� allowing the speci�cation of the mapping through
map arrays or mapping functions� and the mapping of arrays to processor arrangements of
lower rank�

�� Mapping of linked data structures	 Dynamic� user�speci�ed mapping of scalars espe�
cially scalars of derived type that form cells in linked structures� to individual elements of a
processor arrangement�

�� Mapping of derived type components	 Mapping of components of unmapped instances
of scalars of derived type� and mapping of components in a derived type de�nition�

�� Mapping to processor subsets	 Allowing the target processor arrangement in a DISTRIBUTE
directive to be a section of a processors arrangement� and allowing the distribution of dummy
array arguments onto sections of processor arrangements and onto undersized processor ar�
rangements�

�� Processor views	 Allowing multiple views of a processor arrangement�

�� Partial replication to processor subsets	 User�speci�ed mapping of array elements and
scalars to an arbitrary processor subset�

Computation Control and Task Parallelism�

�� Computation mapping	 The ability to control the mapping of computation to processors�

�� Reductions and atomic operations	 Allowing iterations of an INDEPENDENT DO loop to
a�ect each other by shared variables or to otherwise combine results�

�

�� DOACROSS loops	 The ability to specify that loop iterations should be executed when
some synchronization condition is satis�ed�

�� Multiple HPF process model	 The ability to explicitly start HPF processes on proces�
sor subsets� terminate HPF processes� and communicate between HPF processes i�e�� task
parallelism��

�� Parallel sections	 Means of delineating and synchronizing parallel sections� as for example
in PCF Fortran�

Input
Output�

�� Transparent parallel accesses to �les	 Extensions to OPEN that allow the creation of �les
that will be accessed in a restricted manner� to allow faster parallel I�O�

�� Striping�distributing �les over disks	 Directives or extensions to OPEN for optimizing
�le mapping to multiple disk systems� Library routines for obtaining disk system parameters�

�� Out
of
core and persistent arrays	 Directives to advise that an array should be demand
paged and to advise on the characteristics of the page�

�� Checkpointing�Restart	 A checkpoint statement with corresponding restart capability�

�� Asynchronous I�O and prefetching	 Split�phase READ and WRITE�

Communication Optimizations�

�� Asserting the reuse of a communication pattern	

�� Split
phase dereference of distributed objects	

�� Locality assertions	 Methods for advising that the iterations assigned to a given set of
processors reference only data mapped to those processors�

�� Distribution views	 Methods for providing multiple views of the same distributed data�

Language Processor Environment�

�� Language interoperability	 Standard interfaces that allow HPF to call other languages�
and other languages to call HPF�

�� Tool support	 Standard interfaces for use by debuggers� pro�lers� and other tools�

�

Section �

Justi�cation for New Capabilities

We provide technical justi�cation for each new capability outlined in the Executive Summary with
reference to motivating applications� and describe what is known about implementation techniques�

��� Enhanced Mapping

Although HPF�� provides a variety of data mapping options� all produce regular patterns� Many
in the community argue that these are not su�cient for programming at least some� complex algo�
rithms� In particular� the following algorithmic features tend to require more complex partitioning
of data�

� Unbalanced load	 When the work required by di�erent elements varies� it may be advan�
tageous to balance the computational load by distributing the elements unevenly� HPF��
distributions can become unbalanced if the number of elements is not divisible by the number
of processors� but this is considered neither desirable nor elegant for this purpose�

� Unstructured data access	 When the data structure has complex interconnections� it
may be important to place sections that are �near� each other on the same processor� This
arrangement can create sections with somewhat irregular boundaries� rather than the orthog�
onal cutting planes derived from HPF�� distributions� the problem can be especially severe
when the data structure indexing is not related to the connectivity�

� Nonlinear �pointer
based data structures	 When there is no analog of array indices� it
is di�cult to succinctly describe any alignment between the structures� For similar reasons�
the lack of an a priori organization that is� the fact that the data structure is not an array�
makes it hard to describe a general distribution pattern�

� Dynamically
built data structures	 When the data structure is built incrementally� it is
probably inappropriate not to mention confusing� to describe the data mapping before the
structure exists� Instead� it may be better to describe the mapping of each piece as it is added�
Alternatively� one may wish to delay any mapping until the data structure is completed�

No single distribution method or even framework� has yet been suggested that solves all these
problems e�ciently� However� many researchers have suggested partial solutions� The sections
below describe some of these ideas as they might be applied to HPF�

�

����� Irregular Mapping of Arrays

To solve the problems of unbalanced load and unstructured data access of arrays� researchers have
described many new distribution patterns� A few generalizations of HPF�� alignments have also
been suggested� We �rst note several issues that are common to many of these mappings� and then
discuss some of the better�known approaches�

Designers of new data distributions and alignments generally assume that reducing the volume
of data communicated is paramount to improving parallel performance� To achieve this� they
map data items that �interact� with each other onto the same processor as much as possible�
For example� in a molecular dynamics simulation� atoms that are bonded to each other would be
mapped to the same processor� It is up to the compiler to match the computation mapping to
the data mapping� This matching is usually done by some variant of the �owner�computes rule��
in which the processor that owns one reference in a statement performs the entire computation of
that statement� Alternatively� the processor to perform a computation may be speci�ed directly as
discussed in Section ������ The new distributions generally involve more complex address calculation
formulas than do HPF�� patterns� it is assumed and sometimes checked experimentally� that this
cost is overshadowed by the bene�ts of the new distribution�

Generalized Block Distributions	 The simplest new form of mapping simply extends the
HPF�� BLOCK distribution to allow di�erent block sizes on each processor� This idea was discussed
by Fox ���� and was implemented as part of the Superb environment ���� �
�� and later in the
Vienna Fortran Compiler System� Similar features appear in several language descriptions� but
to our knowledge no performance results have been reported from any implementation� There
are no obvious implementation di�culties� however� A slightly di�erent idea was used in the
Paragon compiler� which allowed partitioning of ��D arrays by arbitrary�sized rectangles ����� Both
the one�dimensional and multidimensional versions have many of the advantages of simple BLOCK

distribution for nearest�neighbor communication and are useful for solving load�balancing problems�
In addition� the addressing formulas are fairly simple� the most complex operation is looking up
the processor owning an element which requires some form of search� rather than the closed�form
expressions for BLOCK and CYCLIC�� Generalizing the one�dimensional BLOCK pattern seems to be a
relatively small change to HPF�

Map Arrays	 Perhaps at the opposite end of the complexity scale are map arrays� These dis�
tributions use another array that may itself be distributed� to record the mapping from array
elements to processors� This form of distribution was popularized by Saltz and his coworkers ����
and has appeared in Fortran D ���� and Vienna Fortran ��	�� A number of papers have presented
performance results for programs that use these distributions ���� ��� ���� It is clear that substan�
tial compiler optimization is necessary for acceptable performance� The primary implementation
technique is the inspector�executor paradigm� which divides communication into a setup phase the
inspector� and the actual data communication the executor�� Further optimizations are needed
to avoid explicit index computations� Map arrays can represent any many�to�one mapping of ele�
ments to processors� of course� the performance of the program will depend on which mapping is
actually used� Hence� this approach provides great �exibility but also introduces the danger that
an extremely bad mapping may be speci�ed accidentally� Adding these distributions to HPF would
add much power� but at the expense of great implementation di�culty� But note that much of
this di�culty is present in the implementation of vector�valued subscripts in HPF��

�

User
de�ned Distribution Functions	 Allowing users to de�ne distribution functions directly
is another approach to providing fully general distributions� The principle is identical to map
arrays� except that the mapping is de�ned by a function rather than an array� This idea was
implicit in Id Nouveau ��
� and Kali ��	� and also appeared in Vienna Fortran ��	�� The details
of what a distribution function should return varied between languages� some required only the
processor number� while others also had the function specify the on�processor addressing� None
of the groups reported performance results using distribution functions� but one might expect the
implementation to follow lines similar to map arrays� It is noteworthy that distribution functions
potentially use much less memory that map arrays�� Adding these distributions has advantages
and pitfalls similar to those associated with map arrays�

Value
based Partitioning	 There have been several implementations of implicitly speci�ed or
value�based partitioning� In contrast to the above explicit speci�cations of irregular data distri�
butions� the user speci�es the type of information to be used in data partitioning as well as the
irregular data partitioning heuristic to be used� Language extensions have been designed and imple�
mented to allow users to specify the information needed to produce an irregular distribution� Based
on user directives� the compiler produces code that� at runtime� passes the user�speci�ed partition�
ing information to a user speci�ed� partitioner� This approach to partitioning has recently been
implemented in the Fortran ��D compiler ��
�� employing the CHAOS runtime system ���� ����

Recent experience has indicated that users can� with some e�ort� do without irregular distri�
bution� An irregular mapping can be embedded in an HPF regular mapping by reordering elements
of data arrays and renumbering indirection arrays� This may yield performance comparable to that
achieved by a compiler for a language such as Fortran 	
D� that directly supports irregular distri�
butions ����� In order to use the reordering method� however� users are forced to make numerous
calls to extrinsic library functions�

Although less work has been done on extending alignment� many of the distribution extensions
above have counterparts there� Much research has been done on skewed alignments� which extend
HPF���s a�ne alignment functions to more general linear functions ��� ���� Often the alignments
are generated automatically based on program analysis� Interesting results have been obtained for
single loop nests� but it remains to be seen whether these can be extended to full programs� An
obvious additional extension is to allow general expressions in ALIGN directives� The problems with
implementing this option are similar to the problems of implementing map arrays or distribution
functions� However� the fully general alignments are quite useful for �connecting� di�erent classes
of data elements� such as the vertices and edges in an unstructured mesh�

It is also worth noting that many groups are working on automatic distribution of data struc�
tures� either in regular patterns or by creating more general patterns� This is an area of active
research� and there is little consensus on the best approaches� to take� Therefore� the implications
for HPF are somewhat unclear�

����� Mapping of Linked Data Structures

To handle the problems of nonlinear and dynamically�built data structures� researchers have pro�
posed several pointer mapping mechanisms ���� 	��� Like map arrays� these methods must be
coupled with a rational partitioning of data� In the HPF context� the most pressing need is to
map scalars of derived types� which are referred to by pointers and are dynamically allocated� For
example� in the process of building a tree� each node would be assigned to a processor using ALIGN

or DISTRIBUTE� when it is allocated� If the tree needed remapping later� a walk over the tree could
be used to relocate the nodes using REALIGN or REDISTRIBUTE�� This is already possible in HPF��

�

by using somewhat baroque syntax e�ectively� the new nodes must appear in a REALIGN immedi�
ately after they are allocated�� However� a more convenient method is needed to promote the use
of e�cient advanced data structures� This should be carefully designed to allow the structure to be
built in parallel as well� doing so requires interaction with the features discussed in other sections�

Whatever mechanism is used for mapping the data structure� implementing the program e��
ciently remains a signi�cant challenge� Approaches to date rely on the inspector�executor paradigm
or on lightweight communications mechanisms� The basic techniques require representing a pointer
as a processor and location pair� Maintaining this representation when the underlying objects can
be remapped requires an additional protocol� usually implemented in the runtime system� The
performance implication of this support is unclear� as is the di�culty of incorporating it in a
commercial compiler�

In summary� it is important to allow pointer�based data structures to be partitioned among
processors� The implementation costs of this feature are not well understood� however�

����� Mapping of Derived Type Components

HPF�� does not allow components of derived types to be mapped directly� This can be a limitation
for programs that store several grids in a single structure� For example� if a derived type contains
a large �xed�size� grid as a component� then the user would almost certainly want to distribute
it� In this case� adding the distribution to the derived type declaration would be appropriate�
Other applications might use a pointer component to an array� thus allowing the array size to vary
between derived type instances� In this case� e�ciency may require di�erent mappings for each
instance� Alternately� it may be more convenient to specify the mapping for the corresponding
component in every instance of a derived type� Benkner ���� discusses both possibilities�

Although we do not know of any direct implementation experience in this area� it is easy to
imagine how it could be done� If the mapping information is part of the derived type� the techniques
used for ordinary variables can be employed� Memory allocation for the components is somewhat
challenging if REDISTRIBUTE is allowed� but this di�culty can be overcome by using pointers in the
underlying implementation� In the more dynamic case� the techniques already needed for tracking
pointers to mapped arrays can be applied to pointer components as well� Here we assume that
the instance of the derived type containing the mapped array is not itself explicitly mapped� The
meaning of such a multilevel mapping is not entirely clear�

It appears straightforward to add both of these possibilities to HPF� In fact� it can be done
indirectly already using pointer components and ALLOCATABLE arrays� However� a simpler syntax
would be much appreciated�

����� Mapping to Processor Subsets

HPF�� forces every template to be distributed over all processors� Some programs can pro�tably
use subsets of processors� For example� in a multigrid application the �nest mesh level may �ll
the entire processor array but the coarsest mesh may be much smaller� spreading the coarse mesh
across many processors may generate too much �ne�grain communication for e�ciency� Another
example is task�parallel computations� if only one task accesses an array� the array should only
be stored on processors executing that task� While it is possible to achieve some of these �subset
mappings� by aligning an array to a much larger template� such programming is inconvenient
and may defeat the compiler�s analysis� Instead� directly specifying a subset of processors in the
DISTRIBUTE directive is preferable� This is possible in Vienna Fortran ��	�� and a proposal based
on that capability appeared in the HPF Journal of Development ����� Modest performance gains

�

for a block�structured Navier�Stokes code due to mapping to subsets have also been reported ��� ���

To our knowledge� no detailed description of an implementation of processor subset distribu�
tions has been published� A reasonable strategy for such an implementation� however� would be to
use symbolic quantities in the compiler for parameters such as the number of processors and the
current processor� In a sense� the compiler would act as if the distribution were over the entire
machine� but processors not involved in a particular mapping would skip those sections of code�
Interactions between arrays distributed to di�erent processor sets would require careful manage�
ment� What e�ect either the symbolic computations or the extra compilation technology would
have on e�ciency is unclear�

One special case of processor subset mappings is both important and simpler than the above
discussion� When an array section is passed to a procedure� the section may already be restricted to
a subset of processors� Aligning local arrays with the parameters e�ectively propagates this subset
mapping� As long as the subroutine accessed no global data� it would only �see� the processors that
passed the arguments� Descriptive mappings could reasonably refer to this set of active processors�
and the compilation using symbolics� would pose few problems� Alternately� it might be natural
for a descriptive mapping to refer to a section of a processor array� thus providing more information
to the compiler�

To summarize� mapping to processor subsets is vital for certain problems� Such mappings
are already performed in programs written in lower�level languages� However� generating such
mappings from high�level languages is not a solved problem� Restricting such mappings to procedure
arguments may simplify these problems�

����� Processor Views

HPF�� directives do not allow an array of rank k to be directly distributed to an abstract processor
set of rank greater than k� Thus� if we have a two�dimensional matrix distributed across a two�
dimensional set of abstract processors� there is no mechanism for distributing a one�dimensional
vector across the same set of processors� In other words� there is no way to view the same set of
abstract processors as a processor array having a di�erent shape� in particular a di�erent rank�

The HPF Journal of Development ���� includes a proposal for the VIEW directive which allowed
processor arrangements to be �equivalenced� using Fortran column�major ordering thus allowing
the same set of abstract processors to be viewed as having di�erent rectilinear geometries� Another
proposal would allow processor arrays to be aligned to each other using the syntax of the ALIGN

directive� In this case� two abstract processors aligned to each other would be mapped by the
compiler to the same physical processor� This allows more �exibility� since the user can use any
linear mapping allowed by the align syntax to equivalence the processor arrangements� but it does
not allow the change of rank discussed above� Also� this would allow processor subsets to be easily
speci�ed� since a smaller array of processors could be aligned to a larger array� thus providing a
name for a subset of the larger array�

Implementation of processor alignments would introduce another level of mapping� this� how�
ever� could easily be collapsed into the function mapping abstract to physical processors�

����� Partial Replication to Processor Subsets

An important optimization for improving communication performance in an HPF program�s exe�
cution is to break the execution into a sequence of phases� At the end of each phase� in preparation
for the following phase� all data referenced by a processor is communicated to that processor� so
that the following computation will occur without communication� and so that messages will be

	

as large as possible� Call the data imported to a processor the �locally essential� portion of the
global� distributed data structures�

In the case of a vector�valued subscript� for example� the set of locally essential data can be
found before a phase begins� But consider the following loop�

�HPF� INDEPENDENT� NEW V

DO K � �� M

V � V��K�

DO J � �� N

A�K� � A�K� � B�V�

V � USER	FN� K� J� V �

ENDDO

ENDDO

Here the reference pattern is data dependent and cannot be known by the compiler prior to ex�
ecution of the loop� In some instances see the Barnes�Hut application described in Section ����
the user may be able to specify the set of data used by each processor� or� equivalently� for each
data element of the array B in the example above� the set of processors that will or may� use it�
Suppose the latter� The user computes READER�I�J� and NUM READERS�I� such that B�I� will be
referenced only by processors READER�I�J�� � � J � NUM READERS�I�� We then need a means to
assert that B should be copied to these processors and that references to the global B should be
remapped to the local copy�

��� Computation Control and Task Parallelism

HPF���s computational model emphasizes support for �ne�grained data parallelism� in which DO

loops and other constructs are used to expose parallelism at the level of individual data points� The
EXTRINSIC mechanism is the one exception to this rule�� The user has no direct control over the
mapping or scheduling of these �ne�grained units of computation� these tasks are the responsibility
of the compiler�

Some interesting applications appear to require either user control over mapping and scheduling
and�or the ability to specify more coarse�grained parallelism� Motivations for these features include
the following�

� Software engineering	 Some parallel computations are naturally described in terms of com�
municating� coarse�grained tasks� implementations with the same structure may be simpler
and more modular than purely data�parallel programs�

� Concurrency	 A user may know that program components other than DO loop iterations
can execute concurrently� for example� recursive calls in a divide�and�conquer algorithm
or successive stages in an image�processing pipeline� While this sort of concurrency can
sometimes be expressed in HPF�� e�g�� see the Quicksort procedure in Section ������� the
resulting programs are neither elegant nor easily compiled�

� Scheduling	 Iterations of a DO loop may be able to execute concurrently if certain scheduling
constraints� known to the user but not easily determined by the compiler� are satis�ed� The
user should be able to provide this information�

�

No single framework has been proposed that addresses all of these issues e�ciently� However�
many researchers have suggested partial solutions� In the rest of this section� we describe some of
these ideas as they might be applied to HPF� In the �rst three subsections� we describe extensions
that can be used to control the mapping or scheduling of DO loop iterations� while preserving
sequential semantics� In the fourth and �fth subsections� we describe extensions that introduce
explicit tasking� In discussing the latter extensions� we shall use the term process to denote a
parallel computation comprising one or more logical threads running in a separate name space�
corresponding to a speci�ed HPF program� with its associated subroutines� modules� �les� etc�
As we shall see� both processes and threads may be created by a parallel section construct or by
some form of asynchronous subroutine call� or spawn� that returns control to the caller while the
callee runs concurrently� Threads of the same process can share global variables through ordinary
Fortran 	
 scoping e�g�� through modules�� On the other hand� threads executing in di�erent
processes have no way to share access to the same global variables and need some new mechanism
to communicate�

A process may� of course� execute on multiple HPF processors� and may distribute the data
in its name space over them using HPF data mapping language� The processors of two di�erent
processes are conceptually di�erent and have nothing in common� That fact does not preclude
the use of overlapping sets of physical processors or of disjoint machines connected by E�mail� for
example� but we view these as orthogonal issues�

Threads in the same process execute on the same processors� In particular� they can share
an HPF PROCESSORS arrangement via a module� NUMBER OF PROCESSORS and PROCESSORS SHAPE

return the same result on all the threads of a process�

An HPF�� program is a process consisting of one thread� While it may use FORALL and
INDEPENDENT to express parallel computations that are irregular� its individual loop iterations are
not what we call threads because� unlike threads� they cannot communicate during execution� More
important� they are not loci of control� the compiler may choose to distribute them to any number
of actual threads in some unspeci�ed manner�

����� Computation Mapping

Distribution directives allow the user to control the mapping of data elements to the memories of
the underlying system� There is no corresponding support for mapping the computation to speci�c
processors� In many cases� the compiler with enough analysis can determine the �best� processor
for executing a given computation� However� this determination may not be possible in the presence
of complex code� for example when mapping an iteration of an INDEPENDENT loop in the presence of
indirect array accesses� In such situations� allowing the user to specify the mapping of computation
to the processors can result in better load balance while reducing communication costs�

The concept of using an ON clause to map parallel iterations was �rst introduced by Kali and
later adopted by Fortran D and Vienna Fortran� This clause allowed the user to specify the processor
on which an iteration of the parallel loop should be executed� either directly by specifying an element
of the processor array or indirectly through the ownership of the speci�ed array element� A similar
concept� called the EXECUTE ON HOME directive� is proposed in the HPF Journal of Development �����
However� this coupling of the concept of computation mapping EXECUTE ON� with a mapping from
data elements to processors HOME� is unfortunate� because both those ideas are potentially valuable
independently�

The EXECUTE ON directive could be applied to specify the mapping of INDEPENDENT DO loops�
FORALL constructs and statements� and other indexed array assignments statements� A local�access�

directive could be used to assert that that elements of the speci�ed arrays accessed in an iteration

��

are local if the speci�ed mapping of iterations to processors is enforced� this is discussed further in
Section ������

The EXECUTE ON directive can be further extended in several ways� First it could be used with
other statements� for example� if applied to a subroutine call statement� it could allow the user to
control where the subroutine should be executed� Second� instead of specifying a single processor�
the directive could specify a subset of processors to be used for the execution of the associated
statement� Thus� for example� in a double nested loop� each of the iterations of the outer loop
could be mapped to a �row� of a two�dimensional array of processors� while the inner iteration
could be spread across the associated row� Similarly� a subroutine call could be mapped to a subset
of processors where the distribution of the computation across this subset is controlled from within
the subroutine itself�

These concepts allow the user to control the mapping of computation to the underlying pro�
cessor set� This may result in better load balance and reduced communication�

����� Reductions and Atomic Operations

The HPF INDEPENDENT directive asserts that no iteration of a DO loop can a�ect any other iteration
either directly or indirectly� One consequence of this restriction is that no scalar variable can be
modi�ed in more than one iteration of an independent loop unless the variable has been declared
to be NEW� Thus� for example� one cannot accumulate values generated by the iterations into a
single scalar variable� The values can be stored in an array and then accumulated after the loop�
but this approach does not seem natural and also implies that storage proportional to the size
of the iteration space has been allocated� This is impractical in the Fock matrix application of
Section ����� for example�� We describe three approaches to this problem� of increasing generality
and complexity�� reduction operators� user�de�ned reduction functions� and critical sections�

Reductions have been supported in research compilers with some success� both for irregular
summations and for list building ��
�� ���� They are part of Fortran D and the MPI standard
���� ����

Reduction Operators	 A REDUCTION directive can be placed immediately before an assignment
statement to indicate that the statement represents a reduction across the iterations� The assign�
ment statement is called a reduction assignment and is restricted to be of the following form�

variable � variable op expr

The variable� called the reduction variable� is the target variable into which the values from
all the iterations are accumulated� The e�ect of the loop is to accumulate into the target variable
the values of the expression expr that arise from the di�erent loop iterations� using the speci�ed
operator op and combining the values with the initial value of the reduction variable� The following
example illustrates the use of a REDUCTION directive to sum values of a distributed array in an
INDEPENDENT loop�

X �
�������

�HPF� INDEPENDENT

DO I � �� N

���

�HPF�� REDUCTION

X � X � A�I�

���

��

ENDDO

� FINAL X is
������� � SUM�A���N��

Any binary operator is allowed� including user�de�ned and overloaded intrinsic operators�
The REDUCTION directive allows the compiler to reorder and reassociate invocations of the

operator� By using this directive� the user asserts that the computed result is the same as it would
be without the reduction and independent directives or that the user does not care about the
di�erence�� In other words� the loop computes the same result as in Fortran 	
� Without the
reduction directive� it would be incorrect to use the INDEPENDENT directive for the loop� Note that
the �nal value of the reduction variable is not available until the end of the loop�

If the target variable is an array� di�erent iterations may accumulate into di�erent elements of
the array� as shown in the following code fragment extracted from an unstructured mesh example�

�HPF� INDEPENDENT

DO I � �� NEDGES

J� � EDGE�I� ��

J� � EDGE�I� ��

���

�HPF�� REDUCTION

X�J�� � X�J�� � value

�HPF�� REDUCTION

X�J�� � X�J�� � value

���

ENDDO

We propose some further semantic requirements here� A reduction variable may not appear in
any context in the loop body except in the two indicated positions in a reduction assignment� The
reduction variable may be a scalar� an array� an array element� or an array section� If a variable�
or an element or section of an array variable occurs as a reduction variable� then no instance of
this variable may occur elsewhere in the loop except in reduction assignments� A variable� array
element� or array section may be used as the target of multiple reduction assignments within a loop�
as long as the same reduction operator is used in every such assignment involving the given variable�
However� for purposes of this restriction� the addition �� and the subtraction �� operators are
considered to be the �same reduction operator�� as are the multiplication �� and division ��
operators�

A reasonable implementation of reductions uses a local one�per�processor� accumulator vari�
able into which all reduction operations are applied without interprocessor communication� with a
global accumulation of the �nal value after the execution of all loop iterations� The local accumu�
lators must be initialized not to the initial value of the reduction variable � in the example� but
to the identity element of the reduction operation� For reductions involving intrinsic operators� the
compiler has this value� For other reductions� the user must supply it� Some syntactic extension
to the REDUCTION directive would be needed� for example�

�HPF�� REDUCTION� IDENTITY � �expr�

User
de�ned Reduction Functions	 The form of the reduction operation can be generalized
to allow user�de�ned functions by permitting assignment statements of the following form after the
REDUCTION directive�

variable � function�name�variable� expr�

��

Here� the function function�name is restricted to be a function of two arguments� and the �rst one
must be the same reduction variable reference that occurs on the left�hand side� The semantics of
the statement and the restrictions are the same as in the case of reduction operators�

Examples of user�de�ned reductions are list operations used to aggregate data items moving
between processors in the Binz vortex code and discrete simulation Monte Carlo see Sections ���
and �����

Critical Sections	 More general kinds of updates to shared variables in parallel loops� which
would inhibit the use of INDEPENDENT� can be accommodated in these loops through the use of
critical sections� as de�ned in PCF Fortran� The construct

�HPF�� CRITICAL

�HPF�� END CRITICAL

delimits a critical section� a code sequence that can be executed by only one iteration at a time�
Similarly� the construct

�HPF�� CRITICAL �i��n�

�HPF�� END CRITICAL

delimits a critical section protected by the ith out of n locks that are speci�c to this section� The
direct�simulation Monte Carlo application described in Section ��� illustrates the use of the latter
construct� This uses one lock per cell to guard the addition and deletion of particles to the per�cell
lists� An iteration excludes from concurrent entry into the critical section only other iterations that
are updating the same cell� Arrays of named locks are another possible extension to this concept�

An advantage of the critical section is that it is a relatively well understood� general mechanism�
It enables parallel execution of a very wide class of DO loops� allowing arbitrary updating of shared
variables within such a loop� A disadvantage is that it may be too general� Critical sections can be
used to implement a wide variety of behavior� The performance on NUMA machines of programs
that do �ne�grained updates to such shared objects may be a serious problem�

Critical sections are not an ideal mechanism for implementing reductions� A compiler may
be able to detect the accumulator and the operator inside a critical section� but in general it will
be impossible to determine automatically that the operator is commutative and associative� and
hence to employ the implementation techniques described above� Hence� critical sections are not
an alternative to reductions�

����� DOACROSS Loops

In what are called doacross loops� loop�carried dependencies that prevent a loop from being charac�
terized as INDEPENDENT can be respected via synchronization operations� One possible mechanism
that allows the user to control this synchronization at a high level is the following DOACROSS direc�
tive�

�HPF�� DOACROSS WHEN � logical�expr �

This directive must occur immediately before the associated DO loop� The logical expression�
which contains the index variable of the loop� controls the execution of the indicated iteration� For
example� in the following loop

��

LOGICAL� DIMENSION�N� �� READY

REAL � DIMENSION�N� �� A

A��� � ��� � ��

READY��� � �true�

�HPF�� DOACROSS WHEN � READY�I� �

DO I � �� N

���

A�I� � FUN�A�I���� ����

READY�I� � �true�

CALL ODIOUS	BITBASHING

ENDDO

iteration I is executed only when the logical array element READY�I� is true� The user is responsible
for initializing the READY array and for resetting the elements to �TRUE� when the appropriate
dependence has been satis�ed�

����� Multiple HPF Process Model

This subsection is concerned with mechanisms that allow the creation of multiple HPF processes�
which interact by using various mechanisms not supported in HPF��� Note that HPF���s EXTRINSIC
function interface provides one such mechanism� a call to an extrinsic function creates one coarse�
grained process per physical processor� and these processes can then interact by message passing
or some other mechanism� However� this facility is not felt to be su�ciently general� For example�
it does not allow the user to specify that a computation comprises two communicating HPF��
programs�

A wide variety of schemes have been proposed and explored for creating processes and for
exchanging data between processes ��
�� For example� processes can be created by using an un�
structured spawn construct or by using a structured parallel block or DO loop� Communication can
be achieved by using message passing� channels or virtual �les� tuple space� or monitors� Processes
may be relatively coarse�grained objects appropriate for multidisciplinary simulations� for exam�
ple� or quite �ne�grained objects useful� for example� in divide�and�conquer applications�� There
is considerable experience with all of these approaches� but little experience with their use in an
HPF context� Exceptions are the work on Fortran M ���� �	� and Opus ��
��

A multiple HPF process model may allow multiple threads per name space using a parallel
section construct� to be de�ned in the next subsection� or may restrict programs to just one
thread per name space� In either case� the existence of multiple name spaces processes� provides
a high degree of modularity� which can have software engineering advantages� As each process
encapsulates its own program and data� we do not need to be concerned with name space clashes�
There is also less chance of race conditions� since interactions between processes must be speci�ed
explicitly rather than occurring implicitly via data sharing� In the following� we review some
possible interaction mechanisms�

The ability to create multiple HPF processes requires a variety of extensions to HPF�� compiler
and runtime system techniques� Many of the issues that arise are discussed in ����� For example� as
when compiling for processor subsets� one can use symbolic quantities in the compiler for parameters
such as the number of processors and the current processor ����� The compiler can then compile
each process as if it were to execute on the entire machine�

��

Virtual Channels�Files	 Processes can communicate by sending and receiving messages on
explicitly created virtual channels ��	�� These virtual channels can be represented as virtual �les�
in which case existing Fortran I�O operations extended with appropriate keywords� can be used to
create� open� write� and read virtual �les� check for pending messages� etc� Di�erent access modes
can be de�ned that allow for multiple writers and multiple readers� For example� an OPEN call
may specify that a �le is a virtual �le OPEN�mode�virtual� ����� that it supports multiple or
single writers writers�multiple� writers�single�� that it supports multiple or single readers
readers�multiple� readers�single�� and that it associates a separate �le pointer with each
reader� so that each reader reads all records� or that it associates a single �le pointer with the �le�
so that each read returns a new record readtype�dependent� readtype�independent�� Read
operations would normally be required to block until data is available�

Advantages of this approach are that it builds on existing concepts and I�O libraries in
particular� communications between data�parallel tasks can use the same concepts as HPF �le
I�O�� race conditions are easily avoided just ensure that each �le has one writer and one reader��
and it naturally meshes with extensions for multiple�process I�O� A disadvantage is that dynamic
interaction patterns can require complex �plumbing��

Message Passing	 Alternatively� HPF processes can interact by sending and receiving messages
rather than performing virtual �le operations� Many of the concepts developed in the MPI message
passing standard can then be used� Note that communications are between HPF processes� not
processors� hence� communications can involve multiple processors and the remapping of distributed
data structures� if send and receive operations are applied to distributed arrays� Note also that the
usual system inquiry functions MYNODE and NUMNODES would have to be renamed� as they return
process and not processor statistics�

Shared Data Abstraction	 Yet another interaction mechanism� proposed by Chapman et
al� ��
�� uses shared modules with access controlled by a monitor mechanism� A form of remote
procedure call is used to operate on data in the shared module� the monitor mechanism ensures
mutual exclusion of concurrent RPCs to the same module� Note that there are some similarities to
the Linda tuple space�

An advantage of SDAs is that it provides an arm�s�length interaction model� which enhances
modularity� This is particularly good for multidisciplinary applications� It appears less well suited
for �ne�grained or communication�intensive applications� because of the use of an intermediate
space� For example� a data transfer involves two calls� and a program that needs to �probe� for
incoming data must make repeated RPCs�

����� Parallel Sections

In an alternative explicitly parallel model� coarse�grained threads are created explicitly within a
single name space� Thread creation can be achieved using a parallel section construct� For example�
the following syntax might be used to create one thread of control for each function call F�� ���� Fn�

�HPF�� BEGIN PARALLEL

CALL F�

���

CALL Fn

�HPF�� END PARALLEL

��

As threads execute within a single name space� they can interact simply by reading and writing
shared data objects� Access to shared data may be controlled by locks� barriers� etc�� as in the
X�H� PCF Fortran� model ��
��� A more restrictive model� proposed by Subhlok et al� ����� allows
the user to provide def�use information to synchronize process execution�

An advantage of this approach is that existing programs can be parallelized relatively easily�
In cases in which a shared data structure plays a central role� it seems natural to use this model�
Disadvantages are that modularity is hard to achieve lack of scoping� and that in the PCF model�
race conditions are easy to introduce�

Parallel sections can be implemented quite naturally on shared memory hardware� On dis�
tributed memory hardware� they probably require the use of a virtual shared memory software
layer� Whether and how well this works is currently a research problem� The alternative� which is
to have �xed� user�speci�ed� or compiler�speci�ed locations for data objects with no local caching�
is likely to fail for Barnes�Hut ���� and other important motivating applications�

A simpler proposal would provide a restricted parallel section construct as a syntactically more
elegant alternative for the following code�

�HPF� INDEPENDENT

DO I � ��

SELECT CASE �I�

CASE ���

�first section�

CASE ���

�second section�

CASE �
�

�third section�

END SELECT

ENDDO

Here� there can be no interaction or communication between the parallel regions of code� except
as allowed by the critical sections described in Section ����� and the doacross loops described in
Section ������

��� Input�Output

Incorporating features in HPF to allow high�performance input�output is considered important in
order to provide scalable performance for accessing secondary storage and beyond� Several basic
requirements have been identi�ed�

� transparent parallel accesses to �les�

� out�of�core arrays and persistent arrays�

� checkpointing and restart�

� the ability to stripe �les over disks� and

� asynchronous I�O for overlapping computation with I�O�

Of course� many of these issues are also important in the context of Fortran 	
 and may be
more appropriately addressed in the context of Fortran 	� or Fortran �

� Where appropriate� we
comment on those issues that appear particularly germane to HPF�

��

����� Transparent Parallel Accesses to Files

�From a user�s perspective� high performance access to �les is important� whether the underlying
mechanism involves parallel accesses or something else� It is clear� however� that given technological
trends� extending parallelism to I�O is the only way to achieve high performance in I�O� Paral�
lelism in accessing �les has an implication on the language from which the parallel accesses will be
performed� Fortran on which HPF is based� �le I�O has sequential semantics� There are several
questions to be resolved for implementing parallel accesses to �les from HPF� Is it necessary or im�
portant to provide an explicit mechanism to perform parallel accesses to a �le using new constructs
such as parallel read and write statements If yes� how do these statements interact with traditional
sequential� I�O semantics Some preliminary work has been done in this area ���� ��� ����

Given that parallel access to �les is needed� is it necessary to de�ne new types of �les for
this purpose Some relevant proposals are included in the HPF Journal of Development ���� and
in ���� ����

����� Striping�Distributing Files over Disks

Given that parallelism is crucial to achieving high performance in I�O� �les are and will be striped
over disks� Several important questions to address must be addressed� What controls does a user
have in specifying such distributions Does the user see the individual stripes or portions� of
�les from within an HPF program Are Fortran�HPF semantics preserved in such a �le These
questions are obviously related� Most parallel machines implement some sort of striped �le system�
and many allow control on stripe size� data distribution� number of disks� etc�

To take advantage of the above features� it has been argued that future HPF extensions should
allow an option of breaking away from traditional sequential Fortran I�O semantics� at least for
some special types of �le� This argument is similar to the one on which distribution of data over
processor memories is based in the HPF model� Examples of these �les include scratch �les that
may exist during the execution of a program to store temporary data� Furthermore� in many
applications� it is desired to write data in one distribution and read it in another potentially by a
di�erent number of processors�� Following the current language semantics� accesses in most cases
will have to be sequentialized�

Various proposals for distributing �les over disks are summarized in the HPF Journal of Devel�
opment ����� Other work in striping �les and distributing over disks is discussed in ���� ��� ��� ��� ���

����� Out�of�Core and Persistent Arrays

Many potential applications of HPF operate on large quantities of data� Primary data structures
for these applications reside on disks� These data structures are termed out�of�core� Specifying out�
of�core data structures within HPF means that application developers are not restricted to problem
sizes that �t within available memory� Mechanisms for providing this feature includes extending
the directives in HPF to declare out�of�core arrays and their distributions on disks� Initial work in
this area has been described in ���� ��� �	� 	
��

Persistent arrays are those that persist beyond a program�s execution � for example� data
produced by one program and later needed by another� Metadata associated with these arrays
may describe distribution and access mechanisms� Persistent arrays are perhaps more naturally
considered in the Fortran 	
 standards process rather than as an HPF extension�

��

����� Checkpointing�Restart

The ability to checkpoint an HPF program�s state and then restart the program is especially critical
in applications that execute for a very long time� as these applications are particularly likely to
su�er from machine or software failures� As checkpointing time should be minimized� e�cient
parallel I�O for checkpointing is required� Another important requirement is the ability to restart
a computation on a di�erent number of processors than the number of processors on which the
program was executing when the checkpoint was taken� These requirements have clear implications
for the language� compiler� and runtime system� If checkpointing information is dependent on data
distribution or number of processors� then restarting on a di�erent number of processors may be
very di�cult� if not impossible�

Language features or directives can help compilers determine good places in programs to
perform checkpoints� Just as users can use their knowledge of the application domain to provide
information on data mapping and interactions� users can also provide information on which data to
checkpoint and where� This information reduce both the burden on the compiler and the amount
of information to be saved in a checkpoint�

This feature is also a good candidate to be included in the base Fortran 	� language because
checkpoint and restart may be needed independent of any parallel execution� However� for issues
such as an ability to restart on a di�erent number of processors� HPF seems a more appropriate
place�

����� Asynchronous I�O and Prefetching

Because I�O is slow compared with computation and even communication� it is attractive to over�
lap computation with I�O as much as possible� Such overlapping requires the ability to perform
asynchronous I�O and user�level prefetching of data� There are three possible approaches to pro�
viding prefetching and asynchronous I�O capabilities� runtime libraries� language extensions� and
directives�

Runtime libraries can be used for asynchronous I�O� much as libraries are used for irregular
computations and reductions� This approach requires the fewest language extensions� However�
since for asynchronous I�O control returns to the program while I�O is going on� the mechanism
for signaling completion and synchronization is not clear�

Using directives for asynchronous I�O is another option� Again� issues of signaling and data
pollution need to be resolved� The following example illustrates the use of directives� The basic idea
is for the user to specify a region in which the user guarantees not to access the bu�ers involved in
the I�O� Thus� asynchronous I�O may be performed while computation within the region is going
on� If the I�O does not �nish within this region� then a mechanism is required to block further
computation until the I�O completes�

READ ���
�� A������ Q�Z

�HPF�� I PROMISE NOT TO TOUCH THE I�O VARIABLES

C Specifying that the variables involved in the preceding read operation

C will not be accessed between this directive and its corresponding

C end of region directive

B�TRANSPOSE �MATMUL�C�D��

CALL TEDIOUS	CRUNCHING

�HPF�� NOT�

C A directive to specify end of user guarantee�

Z� SUM �A� �Z

�	

Many open issues must be addressed if this mechanism is to work� These include� how to
handle error conditions� how to specify completion of I�O� and how to inquire about completion�

��� Communication Optimizations

All interprocessor communication in HPF is implicit� For example� the shift of data that occurs in
a �nite di�erence stencil is expressed in HPF in any of the following ways�

� With a forall statement referencing AI���� AI�� and AI����

� With array sections such as A��N���� A��N���� and A��N��

� With the EOSHIFT intrinsic function�

Shift communication may also be subtly expressed as array assignment in which the left hand
side is not aligned with the right hand side�

REAL A������ B�����

�HPF� ALIGN B�I� WITH A�I�

A������� � B

Finally� the realignment of an array may imply a shift communication�

�HPF� ALIGN B�I� WITH A�I�

���

�HPF� REALIGN B�I� WITH A�I���

Some other regular communication patterns are stated idiomatically in HPF� For example

A � TRANSPOSE�A�

is a transpose� as is

�HPF� ALIGN A�I�J� WITH B�I�J�

���

�HPF� REALIGN A�I�J� WITH B�J�I�

and

FORALL�I���N� J���N� A�I�J� � A�J�I�

Finally� irregular communication is stated in HPF through a use of vector�valued subscript�
HPF allows for several forms�

A � B�V�

FORALL�I���N� A�I� � A�I� � B�V�I��

B�V� � A

B � SUM	SCATTER�A� B� V�

Not every use of a vector subscript� however� is a communication� An important idiom expresses
table lookup without communication�

�

REAL PARAMS�����

REAL A�NUMBER	OF	PROCESSORS���

INTEGER INDEX�NUMBER	OF	PROCESSORS���

�HPF� DISTRIBUTE �BLOCK� �� A

�HPF� ALIGN PARAMS��� WITH A���

�HPF� ALIGN WITH A �� INDEX

FORALL �P � ��NUMBER	OF	PROCESSORS��� A�P� � PARAMS�INDEX�P��

In all cases� the HPF compiler is responsible for the e�cient implementation of the required
communication on the underlying runtime software and hardware�

The proposed HPF extensions allow the user to provide additional information� without which
certain communication optimizations will not be applicable by the compiler� In most cases� the
user asserts facts about a program that cannot always be deduced automatically� As with the
INDEPENDENT directive� the compiler must use this additional information appropriately�

����� Asserting the Reuse of a Communication Pattern

Suppose the following code appears�

INTEGER V�N�

REAL A�N�� B�N�

�HPF� ALIGN �I� WITH A�I� �� B� V

�HPF� DISTRIBUTE A�BLOCK�

DO K � �� M

FORALL�I���N� A�I� � A�I� � B�V�I���

�rest of loop�

ENDDO

The implementation of the vector gather implied by B�V�I�� is quite involved� The best�known
technique for this is the inspector�executor paradigm developed by Saltz and others ���� �
�� It
exploits the fact that the communication can be divided into a phase that depends on the addressing
pattern V above� but is independent of the communicated data B above�� and a phase that requires
this data� To be speci�c� let us assume that the addition to A�I� is to be performed by the processor
owning A�I�� On a message�passing system� each processor must �nd the destination processors for
each element of B that it owns� assemble messages to be sent to those processors� call the message
passing system which imposes signi�cant additional startup burdens�� and then have the data sent�
If V�I� is aligned with A�I�� then knowledge of the processors to which elements of B are to be sent
cannot be obtained with local information� but rather requires a preliminary communication step
in which gathering processors send requests for elements to their owners� Finally� when elements
of B arrive at a processor that needs them� they must be bu�ered into a compiler�allocated data
structure� the global indices V must be converted into local indices� used to �nd the arriving data�
so as to avoid having local bu�ers of size SIZE�B��

Note that if and only if the value of the vector subscript V is the same at each iteration of the
K loop� almost all of this work can be �hoisted� out of that loop and amortized over the M uses of
the communication pattern� A good optimizing HPF compiler will do so�

Unfortunately� the compiler cannot always see enough context� because of control dependences
and separate compilation� to know whether a vector subscript is used many times� What is proposed
is a directive to assert the reuse of this and possibly other communication patterns� and to specify
the extent of the reuse� The design of such a directive should consider past experience with other
methods�

��

� Compiler analysis	 Invariant schedules can frequently be detected in practice� given exten�
sive compiler infrastructure ���� �	�� Interprocedural analysis may be necessary ����

� Timestamping	 Extensive analysis can be avoided by maintaining time stamps for the
variables used to compute a schedule� Each modi�cation of a variable is paired with an
update to the variable�s timestamp� A schedule may be reused if all inputs have the same
timestamps at the point of reuse as at the point of original computation �����

� User speci�cation	 The PARTI� CMSSL� and CHAOS libraries have been used to specify
schedule reuse by hand at a rather low level� Constructs to be added to HPF should be
designed at a much higher level�

����� Split�Phase Dereference of Distributed Objects

In general� compilers should try to initiate communication as early as possible� so that communica�
tion latency can be overlapped with computation not requiring the data being communicated� The
proposal here is to allow the user to specify to the compiler that certain communications should
be initiated� Consider� for example� an asynchronous assignment statement� or an asynchronous
REALIGN directive� that initiates communication with an automatic stall when the realigned data
is �rst referenced�

����� Locality Assertions

A proposal in the HPF Journal of Development ���� discusses EXECUTE ON HOME directives together
with locality assertion� These two mechanisms are intertwined to the extent that we will not
attempt to separate them here� The ON HOME clause allows the user to assign a loop iteration to a
single processor� indirectly speci�ed as the owner of an array element� A LOCAL ACCESS �variable�
list� clause allows the user to assert that all references to the named variables in the loop are to
elements stored on the executing processor�

We should also consider assignment of iterations to processor sections or fully general processor
subsets� as the following shows� Consider an implementation of Quicksort as a recursive HPF
procedure� In the recursive subroutine QUICK� one �nds the following�

�HPF� INDEPENDENT

DO I � �� �

IF �I �� �� CALL QUICK�LEFT	VALS�

IF �I �� �� CALL QUICK�RIGHT	VALS�

ENDDO

Note the proposal in Section ����� for a �parallel sections� construct that would replace this clumsy
expression of tree�based parallelism�� Here we have placed the elements of the input vector that are
less than some speci�c element into LEFT VALS and the remainder into RIGHT VALS� possibly using
the PACK intrinsic� HPF�� may allow us to specify a set of processors to be used in each of the calls�
See� e�g�� the proposed extension allowing sections of processors arrangements in DISTRIBUTE�� We
could also arrange to map the data to the processors� as follows�

�HPF�� DISTRIBUTE LEFT	VALS ONTO PROCS�LOPROC��� � HIPROC����

�HPF�� DISTRIBUTE RIGHT	VALS ONTO PROCS�LOPROC��� � HIPROC����

�HPF�� INDEPENDENT� EXECUTE �I� ON PROCS�LOPROC�I� � HIPROC�I��

DO I � �� �

��

IF �I �� �� CALL QUICK�LEFT	VALS�

IF �I �� �� CALL QUICK�RIGHT	VALS�

ENDDO

Finally� we would like to assert that the data required by the recursive calls is already in the right
place�

�HPF�� DISTRIBUTE LEFT	VALS ONTO PROCS�LOPROC��� � HIPROC����

�HPF�� DISTRIBUTE RIGHT	VALS ONTO PROCS�LOPROC��� � HIPROC����

�HPF�� INDEPENDENT� EXECUTE �I� ON PROCS�LOPROC�I� � HIPROC�I��� �

LOCAL	ACCESS LEFT	VALS� RIGHT	VALS

DO I � �� �

IF �I �� �� CALL QUICK�LEFT	VALS�

IF �I �� �� CALL QUICK�RIGHT	VALS�

ENDDO

For a second example� consider the following�

!HPF" PROCESSORS PROCP�
!HPF" DISTRIBUTE BLOCK� ONTO PROC �� x
!HPF" DISTRIBUTE CYCLICK�� ONTO PROC �� y
!HPF�"INDEPENDENT� NEW i�� EXECUTEk� ON PROCk�� LOCAL ACCESSX� Y

DO k # �� P� �

DO i # �� N�P

yi�K� � P � K� k � K� modi� K� � �� # xN�P� � k� i� ��
END DO

END DO

����� Distribution Views

In programming algorithms such as the FFT in HPF� it is desirable to be able to take two di�erent
global views of the same distributed data� Suppose that the current distribution of array x is d��
Then viewing the distribution of x as d� means that

�� The local view of the array on each processor is unchanged� that is� the value of i�th local
element on processor p after the change of view remains the same as the value of the i�th
local element on processor p under distribution d��

�� In the global address space� the distribution of x is considered to be d� � that is� the local�to�
global and global�to�local indexing functions after the change of view correspond to those for
d��

Hence� viewing the distribution of the array di�erently permutes the array in the global address
space while retaining the same order of data elements in the local array of each processor� For
example� suppose the distribution of an array of size �� is block before changing its view to a cyclic
distribution� Then� the following �gure illustrates the e�ect of the change of view�

P � P � P � P �

global index
 � � � � � � � � 	 �
 �� �� �� �� ��

local index
 � � �
 � � �
 � � �
 � � �

value a b c d e f g h i j k l m n o p

��

Viewas cyclic
�

P � P � P � P �

global index
 � � �� � � 	 �� � � �
 �� � � �� ��

local index
 � � �
 � � �
 � � �
 � � �

value a b c d e f g h i j k l m n o p

An implicit assumption of the change�of�view operation is that the number of elements on each
processor is the same under both the d� and d� distribution�

The VIEWAS construct could have the following syntax�

!HPF�" VIEWAS �target�distribution� �� �array�name�

The semantics of the VIEWAS construct is that the distribution of the array �array�name� is
henceforth treated as �target�distribution�� No communication is required for VIEWAS� On a
single processor� VIEWAS has no e�ect�

The use of the VIEWAS construct and the LOCAL assertion is illustrated using the example of a
radix�� Stockham FFT in Section �����

��� Language Processor Environment

Too often� application designers �nd that a single language environment cannot meet their needs
for high performance� Some programs have combined� for example�

� C�� for high�level modularity and coarse task coordination� with

� Fortran for computational kernels� and

� AVS for end�stage data visualization��

For these high�performance applications� HPF�� needs to de�ne a more complete language
processor environment than did HPF��� Speci�cally� HPF�� should include at least advice to imple�
mentors and� perhaps� to the Fortran standards committee� about interoperability with extrinsic
programming languages and generic third�party tools�

����� Language Interoperability

Language interoperability is important for HPF�� to avoid �language creep� and maintain high
performance� In many cases task parallelism� highly adaptive and linked data structures� highly
irregular workload coordination�� a combination of a C�� layer with Kernel HPF might be a
more elegant� high�performance solution than would an extended version of HPF��� HPF�� should
explore possible standards and mechanisms for

� calling distributed extrinsic languages parallel C��� for example� from HPF and HPF LOCAL�
and

� helping HPF and HPF LOCAL to be called from these distributed extrinsics�

��

Whatever data access policies and public data structures this will require may well take a
nested form� considering in turn

� basic policy and descriptor requirements for the Fortran 	
 or Kernel HPF� basis�

� additional complications introduced by HPF directives and mappings� and

� the inevitable additional �dark corners� of data descriptors and data access policies that
distinguish individual vendors�

����� Tool Support

Giving HPF�� the ability to interact with standard third�party tools including debuggers� pro�lers�
and visualizers� is strongly coupled to language interoperability� Many of the potential concerns
standardization of data access policies and descriptors� are the same�

The most signi�cant additional requirement might be a static dump format that would allow
third�party tools to reconstruct source�form correspondence� Third�party tool support will be
especially important to small HPF vendors who cannot a�ord to maintain a dedicated sta� of tool
developers�

��

Section �

Justi�cation for Kernel HPF

HPF contains many directives that o�er ease of use� but the excessive overhead associated with
these directives can severely compromise performance on one or more distributed�memory parallel
computers� Kernel HPF is a high�performance subset of HPF� The features chosen for the Kernel
HPF subset have been selected for the following reasons�

� They allow high performance across all platforms�

� On no platform are there performance �surprises�� Few� if any� combinations of Kernel HPF
features unexpectedly lead the user into low�performance circumstances although it is still
possible to write low�performance codes�

� They are easily understood�

� They are commonly used�

� They are valuable for all platforms�

Kernel HPF limits the directives from HPF to a core subset that can be shown to realize high
performance across a broad spectrum of machines�

A short summary of the proposed Kernel HPF features follows� a more complete proposal has
been developed by Meltzer�

� HPF Kernel Extrinsic An extrinsic is provided to identify the subset to a compiler�

� DYNAMIC Distributions All DYNAMIC distributions are disallowed in Kernel HPF�

� DISTRIBUTE The DISTRIBUTE directive remains mostly intact� only BLOCK�N� has been re�
moved�

� On
Processor Dimensions The ��� syntax is included in the DISTRIBUTE directive dist�

format�clause to indicate on�processor dimensions�

� PROCESSORS The PROCESSORS directive is included without change�

� ALIGN The ALIGN directive is restricted to alignments that are direct� there may be no o�sets
or strides within an ALIGN� Replication and collapsing of dimensions are also disallowed�

� TEMPLATE The template in a TEMPLATE directive must have the same rank and extents as the
arrays aligned to it�

��

� FORALL The FORALL statement and construct are included without change�

� PURE Functions and Subroutines PURE functions and subroutines are included without
change�

� INDEPENDENT The INDEPENDENT directive is included without change�

� Extrinsics All extrinsics are included without change�

� Intrinsics All intrinsics are included without change�

� INHERIT The INHERIT directive is not included�

� Subroutine Interfaces Explicit interfaces are required for any subroutine in which data is
remapped�

� Sequence and Storage Association There is no storage or sequence association�

��

Section �

Motivating Applications

The e�cient solution of many scienti�c problems on parallel processors requires language and
compiler support beyond the capabilities of High Performance Fortran� Several members of the
HPF Forum have contributed applications to illustrate these requirements� For ease of study� the
selected codes that are small but include parallel idioms important to full�scale applications� The
developing collection of source code and documentation can be examined at URL

ftp���hpsl�cs�umd�edu�pub�hpf bench�index�html

��� Barnes�Hut

This code and its discussion were contributed by Robert Schreiber of RIACS� The code itself is
copyright �		�� Robert Schreiber� non�pro�t and benchmarking uses are permitted�

����� Application Description

The application is simulation of the motion of N massive bodies under Newtonian gravity� This is
a ��D code� Extension to ��D is simple�

The ideas are as described in papers by Warren and Salmon� Bhatt and Liu� and Singh�

The underlying problem

With N bodies there are N� interactions� This is prohibitive to compute when N is large� To
make it faster� bodies are grouped into a hierarchy of clusters that each occupy some box in space�
If an body is far from a box� then the force on the body due to all the bodies in the cluster is
approximated as the force due to one body with the combined mass of the cluster� at its center�of�
mass� The clusters are the bodies in a quadtree hierarchy of boxes� The root is a box containing
all bodies� Its children are four boxes of half its length and width� The dissection of space proceeds
recursively until clusters having just one body are reached� This quadtree is called the BH tree� It
is a function of the positions of the bodies�

Favored parallel algorithms

At each time step� the accelerations of the bodies are computed� and their velocities and positions
are advanced by a Runge�Kutta scheme with some adaptive time stepping� The accelerations are
computed by an independent loop over the bodies� as the force on an body is a function of its
parameters and the BH tree� Before these can be obtained� however� the BH tree is constructed�

��

The process of constructing the BH tree is written as a recursive F	
 procedure in an obvious
way� To control the work� at each recursive call the procedure is passed a section of the body array
containing the bodies in its box and no others� This recursion can be carried out in parallel� There
is nonnegligible data parallelism at each invocation� too�

The force calculation is an independent loop with a call to a recursive depth �rst traversal of
the BH tree with pruning when the body is far enough from a box�

Detailed algorithm

Pseudo�code�

type �bh	cell�

real data

type �bh	ptr�� dimension��� �� pkids

end type

type �bh	ptr�

type �bh	cell�� pointer �� node

end type

type �particle�� dimension�nparts� �� parts

type �bh	cell�� pointer �� root� make	bh	tree

do t � �� t	final� delta	t

root � make	bh	tree��� nparts�

forall �i � � � nparts�

force�i� � force	on	part�p�i�� root�

parts�i��position � parts�i��position � �

delta	t � parts�i��velocity

parts�i��velocity � parts�i��velocity � �

delta	t � �force�i� � parts�i��mass�

endforall

call deallocate	bh	tree�root�

enddo

pure� recursive� type �bh	cell� FUNCTION make	bh	tree�lop� hip�

integer lop� hip� lo���� hi���

pointer make	bh	tree

allocate�make	bh	tree�

if �lop �� hip� then

make	bh	tree� data � �mass� center of mass� etc�

else

compute populations of � half�boxes� set lo� hi�

rearrange particles in parts�lop�hip� to move data in each

subbox to contiguous piece of parts�

�HPF� independent

do i � �� �

make	bh	tree�pkids�i��node �� make	bh	tree�lo�i�� hi�i��

�	

enddo

endif

end FUNCTION

pure� recursive� type �point� FUNCTION force	on	part�p� tree�

type �particle� �� p

type �bh	cell�� pointer �� tree

if � �tree�pop �� �� �or� �

norm� p�position � tree�center � � tree�diameter � then

��� far away� treat as a lumped mass

force	on	part � G�m��m� � r��� ��� freshman physics

else

��� must look at the subboxes� Note cute elemental invocation in p�code ���

force	on	part � sum� force	on	part�p� tree�pkids����node� �

endif

end FUNCTION

Data structures and layout

Two derived types� one for BH cells and one for bodies are employed� To enable data�parallel
operation on sets of bodies� there is a single array of this type� in which all bodies reside� On the
other hand� because the BH tree is created by recursive calls and because its topology is not known
a priori� and because there are no data parallel operations performed on it except to deallocate it
at each timestep!� it consists of freestanding� individually allocated scalars of type BH�cell�

The layout� or mapping� of both these data structures is irregular and dynamic�

����� Workarounds for HPF��

For HPF��� one might use a naive� block mapping of the body array� and one might embed the
BH�tree in a complete quadtree of some maximum depth� in which case a canonical assignment
to the elements of an array may be used� This array may likewise be block mapped� There is
some hope of maintaining locality in the body array by permuting its entries at each timestep�
The parallelism of the force calculation is simple to express as an HPF independent loop� and the
owner�computes rule su�ces in this case for the work assignment� The code will run very slowly�
however� because of irregular and data�dependent access to the distributed BH tree�

Similarly� one can invoke a recursive procedure in the body of an independent DO loop in
HPF�� The di�culty in constructing the BH tree this way is to assign the work to subsets of
processors and to map the array of bodies so that the processors assigned to a subtree of the BH
tree i�e� to a box in space� will own most of the bodies that lie in this space�

����� Requirements for HPF��

Desired extensions

The source code� included on the FTP site� demonstrates the extensions needed� They are indicated
with comments containing �HPF��� The proposed capabilities are�

� mapping scalars to single processors for mapping the BH tree� see Sections ����� and ������

�

� partial replication in user de�ned� irregular mapping ������

� distribution functions and irregular mapping of arrays ������

� assignment of iterations of independent loops to subsets of processors generalization of Sec�
tion �����

Example pseudo
code

The use of these extensions is shown as comments in the Fortran 	
 code included on the FTP site�

Context of extensions

There are numerous technical questions concerning the implementation of these extensions� and I
do not believe there is consensus on their desirability� necessity� and implementability�

The most pressing concerns the process of dereferencing a pointer to a dynamically mapped
target� HPF� makes it illegal to do so without reassignment of the pointer after the remapping of
the target� This would make partial replication of the BH tree less simple for the user� who would
need to explicitly construct each local copy of the partial tree and relink the pointers�

��� ASA � Accessible Surface Area calculation

This section was provided by Shamik Sharma of the University of Maryland� The ASA code was
provided by Dr� Lee through Edward Suh of NIH�

����� Application Description

The underlying problem

The protein folding problem is one of the most important in molecular biology� Proteins are bi�
ological macromolecules which consist of long chains of amino acids� Two key issues determine
the properties of a protein �� its constituent amino acid sequence and �� its ��d macromolecular
structure�

Determining the macromolecular structure of a protein through computer simulation is a very
computation�intensive process� Even for a small protein there may be a very large number of pos�
sible structures � and the characteristics of each structure must be examined through simulation�
A critical part of the computation is the calculation of the potential energy of a protein structure�
This function must be recomputed for every single candidate structure� so that the one with mini�
mum potential energy can be found� The potential energy of a structure depends on a number of
terms� one of the key components involves calculating the accessible surface area ASA� of the
molecule�

The ASA of a protein molecule is de�ned as the loci of the center of a spherical probe i�e the
solvent molecule� as the latter is rolled on the surface of the protein maintaining direct contact� It
directly measures the degree of exposure of the protein molecule to the surrounding solvent�

Favored parallel algorithms

There are many di�erent algorithms that have been reported for ASA calculation ���� �	� ����� All
three algorithms cited here are parallelizable� This benchmark uses the Lee and Richards algorithm�

��

In the Lee and Richards algorithm� the protein molecule is modelled as a set of interlocking
spheres� one for each atom� The radius of each sphere I is the sum of the Van der Waals radius of the
atom i and the radius of the probe� Each atom�s accessible area is computed individually and then
these are accumulated to obtain the net ASA� To determine each atom�s ASA� the atom is sectioned
along the Z�axis at a predetermined spacing $Z� The intersection of each sphere with a Z�plane
appears as a circle� Many portions of each circle is within other circles � these are eliminated� since
the probe cannot reach these points� For each Z�section� the sum of the non�eliminated portion of
each circle constitutes the accessible arc � The accessible arcs over all Z sections are accumulated
to gibe the arcsum� The ASA of the atom i is then computed using the formula �

ASAi # arcsum � radiusi � radiusprobe� �$Z

Detailed algorithm

The computation consists of three major phases� The �rst phase reads in the coordinates of all
the atoms in the macromolecule� In the second phase we divide the domain into cells also called
cubes� and assign each atom to a cell� In the third phase� each cell collects a list of neighbor atoms�
these are atoms close enough to possibly have overlapping spheres during the ASA calculation� To
generate the neighbor atom list� each cell includes all atoms in that cell� and all atoms in the ��
cells around it� In the fourth phase� each atom�s ASA is computed� This phase divides the atom
into many Z�sections� For each section� the accessible arc is computed by subtracting the arcs
shadowed by neighboring atoms�

The code is structured as follows�

�� Break Domain into Cartesian cells

�� For each cell

build a list of atoms neighboring each cell

� For each cell

For each atom in cell

For each z section

For each neighboring atom

Compute ASA by computing the �Shadowing�

effect of each neighbor atoms�

�� Accumulate ASAs of all atoms

In pseudo�code the steps ��� look like this �

do j � � to num	cells

do k � � to ��

nc � neighbor�j�k� � neighbor � k

do l � �� num	atoms	in	cell�k�

neighblist�j�nbsiz�j�� � atom�k�l�

nbsiz�j� � nbsiz�j� � �

enddo

enddo

enddo

do �� j � �� num	cells

do
� l � �� num	atoms	in	cell�j�

��

atoma � atom�j�l�

clear	z	sections�atoma�

do �� dz � �� num	z	sections

do �� p � �� nbsiz�j�

atomb � atom�j�p�

if � not	neighbors�atoma� atomb�� goto ��

if � not	intersect�atoma� atomb�� goto ��

shadow	overlapping	regions�atoma� atomb��

if � completely	overlapped�atoma� goto
�

�� continue

�� continue

� continue

�� continue

asa	total � �

do k � �� num	atoms

asa	total �� asa�k�

enddo

A break up of the time spent in each section with data set �mbn� on Sun���

�� Reading Data � ���
 seconds

�� Building Cells �
�
� seconds

�� Building Neigh Atom List �
�	
 seconds

�� Finding ASA of atoms � ���
 seconds

�� Accumulations� misc� � ���
 seconds

�� Total � ����
 seconds

Data structures and layout

Each atom is associated with � doubles containing its X�Y�Z coordinates and its radius� A � th
�eld of size integer� stores the cell� in which the atom is located�

Another array of the size the number of atoms stores the accessible surface area of each atom�
This contains the result of the calculation for each atom�

Each cell is associated with two arrays� One array �num atoms in cell� is used to store the
number of atoms in that cell� while another ��D array stores the indices of the atoms in that cell�

The largest array is the array �neighblist�� which stores for each cell� a list of atoms that are
in neighboring cells� This list is used to �nd which atoms interact with the atoms in a given cell�

A fourth set of arrays stores the arcs of each atom which have been already shadowed due to
proximity with other atoms� These arrays are used inside the ASA calculation loop and are used
for each atom�s calculation� There is an output dependency in the use of these arrays� These arrays
maintain a list of arcs that have been �shadowed� for each atom�

��

����� Workarounds for HPF��

This code has several problems that make it di�cult to parallelize using HPF��� There is a reduction
inside the ASA calculation loop� There are many if statements inside the loop that cause the control
�ow to jump out to di�erent levels of the nested loop� The use of arrays to record the shadowed
Z�sections also creates output dependences that must be removed by privatization�

����� Requirements for HPF��

Desired extensions

� Support for reductions see Section ������ � in this case� the reduction is simple to spot� but
the compiler must know that it is considered safe to reassociate the �oating�point summation
of the ASA

� Support for irregular distribution of cells ������

� Support for complicated control �ow

� Ability to automatically privatize arrays that have output dependencies

The last two bullets are requirements for the compilers� not the HPF language itself�

Example pseudo
code

The computation could be expressed in an extended HPF without too many changes to the above
pseudo�code� Irregular data layouts would need to be speci�ed� The compiler must be told that
�oating point addition can be treated as commutative and associative for the �nal summation loop�
so that the compiler can generate a parallel sum reduction�

Context of extensions

Scalar privatization is a common technique� the array privatization needed to remove the output
dependences on the Z�sections is more complicated but still feasible� Irregular distributions and
reductions have been implemented in Fortran D and Fortran 	
D compilers by Ponnusamy and
Hanxleden ���� �
��

��� Molecular Dynamics �MolDyn�

This writeup was contributed by Shamik Sharma of the University of Maryland�

����� Application Description

The underlying problem

MolDyn calculates the forces acting on each molecule in a certain domain� The domain is a
cuboidal region in space and initially molecules are uniformally distributed over this domain� The
initial velocities of the molecules is assigned using a maxwellian distribution� The simulation is
then carried out for a number of time�steps at the end of which their �nal coordinates and �nal
energies are calculated� The motion of each molecule at each time�step is determined by a� its
velocity at the beginning of the time�step and b� the forces acting on it due to other molecules�
The second part of this problem is an N�body problem�

��

Favored parallel algorithms

There seem to be many di�erent sequential approaches to this problem� They mostly deal with
how to approximate the force�calculation� Since the force�calculation is a N�body computation
problem� I suppose all the standard N�body approximation algorithms apply here Barnes�Hut�
Fast Multipole etc�� The method used here is called the Gerard�Rokhlin algorithm CHARMM
uses a similar algorithm�� This algorithm simply assumes that molecules beyond a cut�o� radius
from a molecule do not a�ect it signi�cantly� This works well for the non�bonded electrostatic and
Van der Waal�s forces� which are generally not important over a long distance unlike� for example�
gravity��

The algorithm as implemented in MolDyn builds an interaction�list of molecules� listing all
the pairs of molecules that can interact with each other� This list changes slowly as molecules move
and must be updated frequently�

Detailed algorithm

a� Initialize variables

b� Initialize coordinates and velocities

of molecules based on

some distribution�

c� DO I � �� N time�steps

�� Update coordinates of molecule�

�� On Every xth iteration of I

ReBuild the interaction�list�

DO J � �� NUM	ATOMS

DO K � J��� NUM	ATOMS

if � close	enough�j�k� �

ia�cnt� � J�

ib�cnt� � K�

cnt���

endif

ENDDO

ENDDO

� Compute the force on each molecule�

its velocity etc�

DO J � �� NUM	INTERACTIONS

force�ia�j�� �� foo�x�ib�i��� x�ia�i���

vh�ib�i��� vh�ib�i�� ��

force�ib�j�� �� bar�x�ib�i��� x�ia�i���

vh�ib�i��� vh�ib�i�� ��

ENDDO

ENDDO

e� Using final velocities� compute KE and PE of system�

The computationally intensive part of this application is the force�computation loop that is
executed each time step� This loop an irregular reduction loop� iterates over the entire interacting
list of molecules� In each iteration� an interacting pair of molecules is taken and the force acting
on each due to the other is calculated� The interaction�list stores the molecule�numbers of the

��

interacting pairs� and it is used to index into the arrays which hold information about the molecules
velocity� position and forces� The force array is used to accumulate all the forces acting on each
molecule�

Besides the force�computation loop� another interesting aspect of this application is the re�
building of the interaction list every few iterations� This rebuilding of the interaction list means
that any preprocessing that may have been performed to optimize the force�computation loop may
have to be repeated� The rebuilding of the interaction list is not very computationally expensive�

Data structures and layout

There are � data arrays� x� vh and force � each containing double�precision numbers and each
with three times as many elements as the number of molecules in the computation� The x array
contains the ��D coordinates of each molecule the vh array contains the velocity components and
force stores the components of the force acting on each molecule�

Besides these three data arrays� there is also an interaction list that is used to index into the
data arrays in the force�computation loop�

The data arrays can be distributed by BLOCK or CYCLIC both yield similar performance��
but one can obtain signi�cant performance improvements by distributing the data using an irregular
distribution which uses spatial information the coordinates�� Grouping molecules that are spatially
close together in the same processor reduces the communication requirements�

����� Workarounds for HPF��

We are mainly concerned with the force�computation loop� Since there isn�t a reduction intrinsic
in HPF�� the irregular accumulation cannot be parallelized� However one can extract signi�cant
parallelism out of the loop by creating temporary arrays to hold the results of the force�computation
of each interacting pair� The computation of the forces can thus be completely parallelized � only
the accumulation into the force arrays would then need to be done sequentially� Besides the fact that
the accumulation is not completely parallelized� this approach also imposes a signi�acnt memory
overhead� since the interaction list can be huge and one would need to create temporary force arrays
doubles� of that size�

Actually the sum�reduction can be recognized despite the indirection� but there needs to be
support not only for the recognition� but for the generation�

����� Requirements for HPF��

Desired extensions

� Irregular Mapping of Arrays ������

� Parallel reductions ������
All that is really required here is the assertion that the �oating�point summations can be
rearranged�

Depending on the level of compiler support expected� the following additional extensions may
help or hinder optimization�

� Iteration Mapping ������
The mapping of iterations to processors should be done in conjunction with the mapping of
the irregular arrays to maximize locality�

��

� Communication Pattern Reuse ������
Acceptable levels of reuse should be achievable automatically by the compiler�

Example pseudo
code

The main loop requires minimal rewriting with support for map arrays and a Fortran�D�style
reduction intrinsics�

DISTRIBUTE maparray force� vh� x

DO I � �� N	STEPS

����

DO J � I� NUM	INTERACTIONS

reduce�sum� force�ia�j���

foo�vh�ia�i��vh�ib�i��x�ia�i��� x�ib�i��� ��

reduce�sum� force�ib�j���

bar�vh�ia�i��vh�ib�i��x�ia�i��� x�ib�i��� ��

ENDDO

ENDDO

Context of extensions

Reduction intrinsics have been proposed by the Fortran�D project� Raja Das� Reinhard von Hanxle�
den and Ravi Ponnusamy have implemented features similar to the DISTRIBUTE maparray in the
Fortran�D and F	
D compilers� and demonstrate signi�cant improvements in codes similar toMol

Dyn�

��� Non�bonded Force Calculations with Cut�O	

This mini�application and and its writeup were contributed by Raja Das of the University of
Maryland�

����� Application Description

The underlying problem

In any molecular dynamics computation a substantial portion of the time is spent performing the
non�bonded force calculation� The non�bonded forces are those that arise due to electro�static and
Vandes Waal�s interaction between the atoms of the molecules� Since every atom interacts with
every other atom this is a N� calculation� but in practice forces are calculated for atoms within
certain distances cut�o��� This is still a ON�� calculation� but actual parameter with which N�

is multiplied is very small � ��� Most of the industrial strength molecuular dynamics code like
CHARMM� AMBER� GROMOS etc� performs the non�bonded force calculations with a cut�o��

Favored parallel algorithms

First of all� I believe there are many di�erent sequential approaches to this problem� They mostly
deal with how to approximate the force�calculation� Since the force�calculation is a N�body compu�
tation problem� I suppose all the standard N�body approximation algorithms apply here Barnes�
Hut� Fast Multipole etc�� The algorithm used here works as follows�

��

�� Non�bonded list generation is done to �nd the atoms interacting with each other� This is
done every few time�steps between �� to �

��

�� Since this list is not updated every timestep� during the actual force calculation there is a
further check to see if the atoms have drifted outside the cut�o� distance�

�� After the force calculation the atom positions are updated�

Detailed algorithm

a� Initialize variables

b� Initialize coordinates and velocities

of molecules based on

some distribution�

c� Initialize Non�bonded list

d� Compute the force on each molecule�

its velocity etc�

ITEMP � �

DO I � �� Num	Atoms

NPR � INBLO�I� � ITEMP

DO J � �� NPR

k � JNB�J�ITEMP�

if �distance�x�k��x�i�� � cutoff� then

force�i� �� foo�x�k�� x�i��

force�k� �� bar�x�k�� x�i��

endif

ENDDO

ITEMP � INBLO�I�

ENDDO

The computationally intensive part of this application is the force�computation loop that is
executed each time step� This loop an irregular reduction loop� iterates over the entire interacting
list of atoms� In each iteration� an interacting pair of atoms is taken and the force acting on each
due to the other is calculated� The interaction�list stores the atom�numbers of the interacting pairs�
and it is used to index into the arrays which hold information about the atom coordinates� The
force array is used to accumulate all the forces acting on each atom�

Besides the force�computation loop� another interesting aspect of this application is the re�
building of the interaction list every few iterations� This rebuilding of the interaction list means
that any preprocessing that may have been performed to optimize the force�computation loop may
have to be repeated� the rebuilding of the interaction list is not very computationally expensive� it
is also not easily parallelizable� In this example we don not present this part of the code�

Data structures and layout

There are a number of data arrays but the important ones are the ones that store the coordinate
information x� y and z�� the force information dx� dy and dz�� the interaction list jnb� and the
pointer into the interaction list inblo�� The interaction list is a sparse matrix stored in a CSR
format�

The data arrays can be distributed by BLOCK or CYCLIC both yield similar performance��
but one can obtain signi�cant performance improvements by distributing the data using an irregular

��

distribution which uses spatial information the coordinates�� Grouping molecules that are spatially
close together in the same processor reduces the communication requirements�

����� Workarounds for HPF��

We are mainly concerned with the force�computation loop� Since there isn�t a reduction intrinsic
in HPF��� the irregular accumulation cannot be parallelized� However one can extract signi�cant
parallelism out of the loop by creating temporary arrays to hold the results of the force�computation
of each interacting pair� The computation of the forces can thus be completely parallelized � only
the accumulation into the force arrays would then need to be done sequentially� Besides the fact that
the accumulation is not completely parallelized� this approach also imposes a signi�cant memory
overhead� since the interaction list can be huge and one would need to create temporary force arrays
doubles� of that size�

Actually the sum�reduction can be recognized despite the indirection� but there needs to be
support not only for the recognition� but for the generation�

Another feature of this code is the presence of an if statement inside the inner loop� During the
execution of this loop on a distributed memory machine� depending on how the data is distributed
coordinate data needs to be fetched and force data needs to be written out to memory locations
in other processors� Because of the presence of the if statement in the inner loop the number
of coordinate data read from other processors and the number of force data updated in other
processors memory is di�erent� To perform message blocking to improve performance there is a
need to execute the if statement outside the loop to �nd the actual number of o��processor updates
and in what memory locations� This if�statement can be thought of as inducing another level of
indirection in the code� A program slicing technique can be utilized to generate e�cient code for
this�

����� Requirements for HPF��

Desired extensions

The required extensions are the same as for MolDyn given above� More sophisticated compiler
handling is required because of the conditional inside the loop�

Example pseudo
code

DISTRIBUTE maparray force� vh� x

DO I � �� N	STEPS

����

ITEMP � �

DO I � �� Num	Atoms

NPR � INBLO�I� � ITEMP

DO J � �� NPR

k � JNB�J�ITEMP�

if �distance�x�k��x�i�� � cutoff� then

reduce�add�force�i��foo�x�k�� x�i���

reduce�add�force�k��bar�x�k�� x�i���

endif

ENDDO

�	

ITEMP � INBLO�I�

ENDDO

ENDDO

Context of extensions

Reduction intrinsics have been proposed in the Fortran D project� The program�slicing technique
to unroll multiple levels of indirection has been implemented in the Fortran D compiler�

��� EULER
 A Multimaterial� Multidiscipline� ��D Hydrody�
namics Code

����� Application Description

The EULER benchmark is derived from the PAGOSA code� developed at Los Alamos National
Laboratory by Kothe� Baumgardner� Cerutti� Daly� Holian� Kober� Mosso� Painter� Smith� and
Torrey� This description and following subsections contain much material quoted or adapted from
their report ����� PAGOSA� in turn� owes its basic physical model and numerical algorithms to
MESA �����

The PAGOSA code incorporates a �new data�parallel model for three�dimensional ��D� high�
speed �uid �ow and high�rate material deformation��� The model��� has been developed recently
by a team of computational physicists� numerical analysts� and computer scientists at the Los
Alamos National Laboratory LANL� on the Connection Machine CM� series of massively�parallel
supercomputers� With its e�cient material interface reconstruction algorithm and �nite�di�erence
approximations on an Eulerian mesh� PAGOSA is well�suited for modeling transient �ows involving
multiple immiscible �uids and�or distinct materials experiencing large distortion� The evolving suite
of physical models in PAGOSA currently includes models for compressible hydrodynamics� realistic
equations of state� elastic�plastic material deformation� reactive burn of energetic materials� neutron
transport� and turbulence e�ects� The PAGOSA algorithms are clear� concise� and portable due to
implementation in data parallel fashion with the Fortran 	
 programming language��

As a derivative of PAGOSA� EULER is a multi�model� as well as multi�material code� How�
ever� for the purposes of the HPF II benchmarks� the multi�material aspect is of most importance�
EULER has been adapted by the developers and the Los Alamos benchmark group Olaf Lubeck et
al�� and is considerably reduced in scope and length from the PAGOSA production code� While the
original developers consider the PAGOSA code a success on machines such as the Connection Ma�
chine� the developers and the benchmark group have analyzed performance in some detail� Their
conclusion is that the CM implementation can be quite ine�cient due to the low �truth ratio�
of array operations implied by the actual multi�material data distribution� In other words� data
arrays are allocated for all materials� even though many regions of the problem may not actually
contain some of the materials� Furthermore� calculations are done for all materials� even in regions
where the density of materials is zero� So� much computational power is wasted on meaningless
calculation�

The underlying problem

EULER�s parent PAGOSA is intended to solve detailed physical simulations involving �uid �ow
and material deformation� with mixed materials� highly complex ��D geometries� and a number of
options for simulation physics� As one example� the development team completed a �simulation of

�

a problem important to the oil industry known as oil well perforation� Well holes are typically lined
with steel pipe and�or concrete casing that usually must be perforated with tiny high�explosive
charges �oil well perforators�� prior to pumping� Perforation allows production of oil from speci�c
depths predetermined from logging data� The perforators are inserted into the well hole inside
�carrier tubes�� and then detonated when the tube has been lowered to the prescribed depth� They
are designed to make clean holes in the casing and to penetrate several inches outward into the
surrounding oil�bearing strata� By modeling the perforation process� PAGOSA can be used to
study perforator performance� i�e�� hole size and penetration depth� as a function of perforator
design and layout� tubing�casing geometry� rock formation� and other design parameters��

Favored parallel algorithms

The EULER�PAGOSA model incorporates algorithms to solve for the time evolution of each ma�
terial based on the continuum mechanical conservation relations� and using a �one��uid� approxi�
mation in which all materials move with a single velocity� The system of conservation equations is
closed with constitutive relations for the material pressure and deviatoric stress� These equations
are solved in Eulerian i�e� �xed� frame� �partitioned in Cartesian geometry into �xed� logically con�
nected� orthogonal hexahedra��� The conservation equations are solved using second�order accurate
�nte di�erence approximations with a conventional Lagrangian�remap scheme��

Data structures and layout

The basic data structure of the problem is a distributed� ��D mesh� The computational domain
is partitioned in Cartesian geometry into �xed� logically�connected� orthogonal tetrahedra� Flow
variables are laid out on the mesh in a standard �staggered mesh� fashion� with each component of
the velocity �eld residing at vertices and all other variables located at cell centers�

The multi�material implementation is handled as follows� The EULER�PAGOSA �parallel
array dimensions those that are spread across the processors� correspond to the x�y�z� coordinates�
The other dimension� needed for multiple materials� is �serial�� or an in�processor dimension that
exists entirely within the memory space of each processor� Elements of all arrays with identical
spatial coordinate indices therefore reside within the same physical processor� The CM Fortran
compiler currently lays data out on the machine by allocating a portion of each parallel array to
each processor� termed the �subgrid� because it represents a subvolume of the mesh��

�Communication of data is almost entirely nearest�neighbor� termed �NEWS� on the CM
for North�East�West�South�� and is accomplished with the Fortran 	
 CSHIFT and EOSHIFT
functions� The few exceptions are the global reductions reducing the data in an array to one
value� such as a maximum� used for diagnostics and time step reduction� Communications are only
nearest�neighbor because PAGOSA is based on a time�explicit �nite�di�erence formulation using
a logically�connected data structure mapped onto a regular Cartesian mesh� The explicit nature
minimizes the number of needed global reductions and the regular data structure eliminates the
need for non�local communications� both of which degrade performance on the CM����

����� Workarounds for HPF��

���� The PAGOSA algorithms are highly parallelized and well�suited for the CM� as current perfor�
mance analysis indicates that �	�computational time is spent in parallel operations on the CM� only
�
��
parallel computation time� however� is currently spent performing useless work as discussed
below�

��

Algorithms that may not parallelize easily are those that require logical branching� The Fortran
	
 WHERE construct� used in conjunction with masks� however� signi�cantly alleviates the prob�
lem� and enables parallel array operations to be conditional� Legislating that di�erent operations
be performed on di�erent portions of an array is also allowable without breaking parallelization�
This feature is used in PAGOSA to great advantage� for example� in the application of boundary
conditions and in the upwind di�erencing of the advection calculation�

A component of the PAGOSA algorithm that did not parallelize easily is the treatment of cells
containing more than one material �mixed cells��� Despite the fact that the percentage of mixed
cells at any given time is usually quite small� the current PAGOSA algorithm treats every cell as
though it were mixed� with memory allocated accordingly� even though the cell may contain only
one material� A large load�balance penalty is therefore incurred frequently� since for problems with
many materials most processors are doing useless work a large fraction of the time� This also results
in ine�cient memory usage for problems with large � �
� numbers of materials� It is surprising
that� in spite of this load�balance problem� PAGOSA performs well on the CM relative to MESA
����� a similar ��D �ow model written for conventional vector machines� This improved performance
has prompted other groups to follow suite� using the same basic data parallel implementation ������

It should be noted that although there exist ine�ciencies in this implementation� the physicists
who use PAGOSA are able to run problems on the CM which they cannot run elsewhere� due to
its large amount of memory�

����� Requirements for HPF	�

Desired extensions

Currently� a de�nitive solution to the problem is not known to the developers and benchmark
group� At least in the context of a data�parallel programming model�� One approach might be
to consider a set of sparse spatial meshes� each of which comprises only one material� and which
is distributed over some subset of the processors� This would seem to require some combination
of irregular mappings Section ������ and mapping to processor subsets ������� However� some
outstanding problems are� �� Communications are no longer necessarily nearest�neighbor� �� the
spatial subgrids� which are themselves possibly sparse and irregular� might imply further �truth
ratio� problems� �� there is still a possible load�balance problem� �� there still might be excessive
memory consumption if arrays of indices are needed�

�� Multigrid �MG�

This section was contributed by Scott Baden at the University of California� San Diego� Sections
��� of this Multigrid writeup are based primarily on notes from by Jim Demmel at the University
of California� Berkeley�

����� Application Description

The underlying problem

MG solves the discrete Poisson equation in the unit box� though it may be applied to the solution
of more general systems of equations� William Briggs� A Multigrid Tutorial� SIAM Publishers�
provides a good introduction to the topic�

As compared with traditional relaxation�based methods like Red�Black Successive Overrelax�
ation RB�SOR�� MG converges in a constant number of iterations� independent of the size of the

��

RHS� RB�SOR converges in ON� iterations for an Nd mesh in d dimensions�� The price we pay
is that one iteration of MG takes log �N parallel steps� though the parallel steps get successively
smaller� In addition� we will not only need to communicate among nearest neighbors� but with
neighbors � away� � away� � away� ��� � N�� away� This more distant communication is the reason
for the quicker convergence� because information is �spread around� the mesh more quickly than
is possible with nearest neighbor communication�

Favored parallel algorithm

Without any loss of generality� we consider the �d algorithm� the ensuing discussion generalizes
immediately to three or more space dimensions� We assume for convenience that N # �n � �� We
will need a sequence of meshes� each with about one fourth as many points as its predecessor� The
�nest mesh will be denoted u�� with values u�i�j � and corresponds to the same mesh as for Jacobi
and SOR� The next �ner mesh will consist of every other point in both directions� in u��i�j and
be denoted u�� with entries u��i�j�
 � i� j � �n��� u� will have entries u��i�j�
 � i� j � �n��� This
continues for uk � k up to n� �� uk��i��j occupies the same mesh point as uk���i�j �

The MG algorithm works by using an approximate solution for Poisson�s equation from a
coarse grid uk�� as an initial guess for starting an iterative scheme for Poisson�s equation on the
�ner grid uk� The approximate solution on uk�� is obtained by applying this algorithm recursively�
On the coarsest grid� un��� which has just � unknown� we solve exactly� It is easiest to describe
the algorithm in terms of several simple building blocks�

Detailed algorithm

J�� k� d� uk� bk� � Weighted Jacobi�s method� apply d iterations of a weighted Jacobi�s method with
weight � on the grid with starting values uk and with right hand side bk� For simplicity we omit
superscripts indicating iteration number��

for m # � � d
forall � � i� j � �n�k � ��

uk�i�j # �� ��uk�i�j � �uk�i���j � uk�i���j � uk�i�j�� � uk�i�j�� � bk�i�j���
endfor

In order to use the solution from a coarse grid to help solve a problem on a �ne grid� we need
to be able to transfer a problem from the �ne to coarse grid and back again� Going from �ne to
coarse is called restriction� and from coarse to �ne is interpolation�

Rk� uk� uk��� � Restrict the �ne grid data in uk to the coarse grid data uk��� Do this by taking
���� of the sum of the NW northwest�� NE� SW� and SE �ne grid neighbors� ��� of the N� E� W�
and S �ne grid neighbors� and ��� of the �ne grid value at the same location�

forall � � i� j � �n�k�� � ��
uk���i�j # uk��i����j�� � uk��i����j�� � uk��i����j�� � uk��i����j�������

uk��i��j�� � uk��i��j�� � uk��i����j � uk��i����j��� � uk��i��j��
forall boundary points� let uk���i�j # uk��i��j

Ik� uk� uk��� � Interpolate the coarse grid data in uk�� to the �ne grid data uk� Do this by averaging
the nearest neighbors in the grid�

��

forall � � i� j � �n�k�� � �� uk��i��j # uk���i�j
forall
 � i � �n�k�� � �� � � j � �n�k�� � �� uk��i����j # uk���i�j � uk���i���j���
forall � � i � �n�k�� � ��
 � j � �n�k�� � �� uk��i��j�� # uk���i�j � uk���i�j�����
forall
 � i � �n�k�� � �� � � j � �n�k�� � ��

uk��i����j�� # uk���i�j � uk���i�j�� � uk���i���j � uk���i���j�����

Using these building blocks� we build the Multigrid V�cycle�

MGV k� uk� bk� �� d� � Perform multigrid V�cycle to solve Poisson�s equation with right hand side
bk�

if k # n� � �� uk has just one unknown

then
uk���� # uk���� � uk���� � uk���� � uk���� � bk�������

else
J�� k� d� uk� bk� �� perform weighted Jacobi

forall � � i� j � �n�k � �� �� compute residual

rk�i�j # ��uk�i�j � uk�i���j � uk�i���j � uk�i�j�� � uk�i�j�� � bk�i�j���

Rk� rk� rk��� �� restrict residual to coarser grid

forall � � i� j � �n�k�� � �� �� initial guess to coarse grid problem

uk���i�j #

MGV k � �� uk��� rk��� �� d� �� solve coarse grid problem recursively

Ik� tk� uk��� �� interpolate coarse grid correction back to fine grid

forall � � i� j � �n�k � �� �� update fine grid solution

uk�i�j # uk�i�j � tk�i�j
J�� k� d� uk� bk� �� perform weighted Jacobi again

endif

Data structures and layout

Each level of the multigrid hierarchy includes the right hand side� the computed solution� the
residual� plus a few scratch arrays� Communication between levels is restricted to the next coarser
level if there is one� and the previous �ner one if there is one�� No communication spans more
than one level� Because the smoother does an equal amount of work at every data point� each level
of the hierarchy can be BLOCK partitioned�

Multigrid will not make e�ective use of a parallel computer if N is �too small�� Performance
is ultimately limited by that at the �nest level� and is likely to be more impressive for ��d problems
than ��d ones� This happens because the meshes decrease in size as MG moves up the hierarchy to
successively coarser levels� the cost of a sweep is proportional to the mesh size� Put di�erently� MG
runs out of work when the mesh gets too coarse� The amount of e�ective parallelism that can be
e�ectively utilized decreases with increasing level� In addition� the number of processors usable at
each level will likely be smaller than that predicted by simple workload considerations� as subgrids
get smaller� vector lengths get shorter� and surface to volume e�ects on communication become
more severe� We will likely want to run on only a single processor after reaching a certain level�
Each level will run on an appropriate processor subset whose size is architecture�dependent�

We may be able to reduce communication costs a bit by replicating the computation over each
processor subset� This avoids the need for the processor subset which is computing the solution

��

to communicate that result to the remaining processors� For example� if we are computing level k
on all P processors� and we want to compute at level k � � on P�� processors� then we replicate
level k�s computation on each quadrant of the machine� However� this may increase storage costs
signi�cantly� as described below�

Another issue that we need to be concerned with is storage� Naively� we could represent a d

dimensional mesh hierarchy as hyperplanes of a d�� dimensional array� However� this scheme can
be extremely wasteful of storage� it consumes space for Nlog�N� unknowns� In fact we need to
represent only X

l��
log��N���N�l�d

unknowns� The di�erence is critical as N increases� especially in � dimensions�

Consider for example� forN # ���� We actually require storage for ���M unknowns� Assuming
double precision �oating point and � copies of each unknown� about �� Mbytes of storage is used�
By comparison� the naive scheme reserves space for ����M unknowns� or ��
 Mbytes of storage�
Thus� we waste a factor of � in storage using the naive scheme�

����� Workarounds for HPF��

There are two issues� processor subsets and compact storage�

Processor Subsets

It is possible that the e�ect of processor subsets could be approximated through a combination of
replicated storage and clever bookkeeping� In other words� the mesh at each level is the same size as
the �nest level� and a copy of the solution is simply tessellated the appropriate number of times to
�ll out the mesh� including boundary conditions� A where mask is needed to disable computation
on the replicated physical boundaries� Whether this scheme is e�cient remains to be seen� subscript
expressions involving coarse and �ne grid communication restriction and interpolation� become
more complicated�

Another approach is to manage recursion explicitly� that is� use separate versions of each
subroutine� qualifying each subroutine name with a level number appended as a su�x� Then�
following the advice to implementors described in x���� page ��� we use PHYSICAL PROCESSORS and
MACHINE LAYOUT directives to set the number of physical processors used at each level� The scalar
form of the PROCESSORS directive p� �
� could be useful in handling serial computation� Of course�
it is an interesting exercise whether the compiler can be clever enough to replicate the computations
as described above�

Compact Storage

The CM Fortran code found in the benchmark suite illustrates a work�around� rather than de�ne a
monolithic mesh hierarchy structure we let each level de�ne local� automatic storage for the required
unknowns� The levels per se are not explicitly de�ned� but allocated and return incrementally
according to the dynamics of the subroutine call sequence�

����� Requirements for HPF��

Using textually expanded recursion is inconvenient� We prefer a dynamic form of the PHYSICAL

PROCESSORS directive� that allows each subroutine invocation to run on a number of processors
determined at run time� by the size of the right hand side passed see Section ������ Again

��

it is an interesting question whether the compiler could be made smart enough to replicate the
computations�

��� Binz � Vortex Dynamics

This writeup was contributed by Scott B� Baden at the University of California� San Diego� Portions
were also written by Scott Kohn�

��
�� Application Description

The underlying problem

Binz employs vortex dynamics speci�cally� Chorin�s vortex blob method� to solve the vorticity�
stream function formulation of the ��d incompressible Euler equations� The method discretizes
vorticity the curl of velocity� onto marker particles� called vortices� and computes particle trajec�
tories over a sequence of discrete timesteps� Computing a time step entails evaluating the force
induced on each particle� and then �pushing� the particles according to the induced force� The
force calculation typically dominates the computation time�

Favored Parallel Algorithm

Binz solves theN body problem using a rapid summation algorithm known as Anderson�s Method of
Local Corrections� in which the velocity evaluation is divided into two parts� far��eld velocities and
local corrections� In the far��eld phase� particle velocities are projected onto a grid and Poisson�s
equation is solved to obtain an approximate discrete global velocity �eld� this computation is
similar to that computed in particle�in�cell PIC�� This velocity �eld is locally corrected in the
local corrections step� which recomputes nearby interactions exactly using the direct method� In
this way� most of the far��eld in�uences can be lumped� avoiding the cost of the fully direct ON���
computation�

The particles are sorted into a ��d array of bins to avoid a costly ON�� search for nearby
particles� Due to the motion of the particles� the binning array is resorted after velocity evaluation�
The direct local interactions are handled a bin at a time� A �correction radius� C is chosen
to distinguish nearby particles� closer than C� from distant ones� These nearby particles� once
identi�ed at any time� are the ones that participate in the local part of the computation� Thus� all
the particles in�uencing bin i� j� are found in the bins whose indices di�er from i and j by integers
no bigger than C� The computation of the right and side is also organized around the bins�

Detailed algorithm

�� Set up initial vorticity distribution

�� Compute induced velocity on each particle

U � �

a� Compute far field velocity field

forall �i�j� in ���M�����M���

accumulate velocities induced by particles in bin�i�j�

onto positions corresponding to the boundary of U�

U������ U�M���� U������ U���M�

accumulate discrete Laplacian of velocities induced

��

by particles in bin�i�j� onto positions corresponding to

local neighborhood of bin�i�j�� �i�D�i�D � j�D�j�D�

end for all

Apply Poisson solver to solve for U

b� Compute local corrections

forall �i�j� in ���M�����M���

Set up interpolation stencil with velocities corresponding to

neighborhood of U�i�j�

forall �k�l� in ��C�C � �C�C�

Project and subtract direct velocities induced by

bin�i�j�k�l� from positions of interpolation stencil

end for all

Interpolate from corrected stencil onto particles in bin�i�j�

forall �k�l� in ��C�C � �C�C�

Accumulate direct velocities induced by bin�i�j�k�l�

onto particles in bin�i�j�

end for all

end forall

�� Advance each particle according to its induced velocity�

The forall loops iterate over the bins and are nearly independent except for the accumula�
tions� Computations of the form �accumulate velocities induced by bin���� on positions X� implies
another nested forall loop� as we will compute a tensor product of velocities induced by a set of
particles against a set of positions� and then apply reduction�

The sorting procedure is tricky� since particles owned by di�erent processors can migrate to
the same bin� This introduces possibly non�deterministic behavior which we will discuss below�

Data structures and layout

In the serial f��� implementation provided� bins can have di�erent lengths� Thus� the binning
structure is implemented as an array of pointers In fact� because we manage our own storage� we
implement the bins as an array of integers� that act as pointers into the particle data structure�
In HPF we would store the particles in a single ��d structure� and the bins would provide pointers
into this structure� Using a ��d array� in which the third axis corresponded to particle number�
would waste storage��

Because the particles are distributed unevenly we must use CYCLIC or BLOCK CYCLIC decompo�
sitions to balance the workloads� However� a signi�cant reduction in overhead time and memory�
would result if we could utilize a recursive bisection algorithm to split the mesh large chunks
carrying roughly equal work�

��

��
�� Workarounds for HPF��

We are concerned with three problems� �� accumulation of velocities onto the �nite di�erence
mesh� �� avoiding non�deterministic behavior in sorting� �� load balancing�

Accumulation onto the mesh entails computing the tensor product of velocities induced from
a given set of positions on another given set of positions and then applying a reduction intrinsic to
accumulate all velocities induced against a given position over all positions This does not pose any
di�culty� it is a serial computation carried out in parallel for each bin� such that each accumulator
is a local automatic array� The di�culty arises when we need to accumulate the local accumulators
into the global mesh� the accumulators for di�erent bins will overlap� Our solution is costly� we
let each accumulator cover the entire domain of the mesh� generating a �d structure which we
can reduce with the summation intrinsic� To save storage we may be able to generate only one
accumulator per processor� rather than one per bin� in which case we index the accumulator with
the processor ID�

Sorting runs into a similar di�culty� Howeer� as it is relatively inexpensive on smaller numbers
of processors it can be done serially with a do loop�

There is no way to handle recursive bisection in HPF���

��
�� Requirements of HPF��

Desired extensions

� reduction intrinsics to handle list append and to handle summation and subtraction of array
sections see Section ������

� DISTRIBUTE�BLOCK IRREGULAR� to enable irregular blocked decomposition ������

Example pseudo
code

integer BLOCKS���P�

DISTRIBUTE�BLOCK	IRREGULAR�BLOCKS�� bins

If language and compiler support for irregular partitioning of data and workload are provided� the
high�level HPF code will bear a close resemblance to the Fortran ���

Context of extensions

Mapping arrays are not appropriate for handling recursive bisection since they do not preserve
the locality in the underlying blocking structure� Vienna Fortran�s approach to handling irregular
blocked decompositions may have di�culty in balancing some workloads since the partitionings
are constrained to tensor products of ��d dimensional irregular partitionings� and are not truly
multidimensional�

Reduction intrinsics have been proposed by the Fortran�D community�

��� DSMC �Direct Simulation Monte Carlo� method

This section was contributed by Bongki Moon of the University of Maryland� The code is derived
from one developed at NASA Langley�

��

����� Application Description

The underlying problem

The DSMC method for randomized simulation of individual particles is here used to model a real
gas� It includes movement and collision handling of simulated particles on a spatial �ow �eld
domain overlaid by a Cartesian mesh ���� �

�� The spatial location of each particle is associated
with a Cartesian mesh cell� Each mesh cell typically contains multiple particles� Physical quantities
such as velocity components� rotational energy and position coordinates are associated with each
particle� and modi�ed with time as the particles are concurrently followed through representative
collisions and boundary interactions in simulated physical space�

Favored parallel algorithms

DSMC requires e�cient runtime support for movement of particle data across processors� The
computational requirements at a processor tend to depend on the number of particles assigned there�
Particle movement therefore may lead to variation in work load distribution among processors� The
problem domain overlaid by a Cartesian mesh needs to be partitioned in such a way that work load
is balanced and the number of particles that move across processors is minimized� It may also need
to be repartitioned frequently in order to rebalance the work load during the computation� These
characteristics raise an issue of dynamic load balancing and require

� e�ective domain partitioning methods� and

� an adaptive policy for domain repartitioning decisions�

Detailed algorithm

In the Fortran��� version of DSMC� several arrays are used to store the physical quantities asso�
ciated with each molecule� Most importantly for the purpose of load balancing� cell�i� stores the
index of the cell containing molecule i� In this pseudo�code� the REALIGN directive represents an
instruction to redistribute several data arrays of the same size� including cell� based on the value
in cell�

c loop over cells to recompute physical position of each molecule

do N � �� n	cells

do i � IC��N��� to IC��N��IC��N�

j � lcr�i�

p��j� � foo�p��j��p��j��

p�j� � foo�p�j��p��j��

cell�j� � foo�p��j��p�j��

enddo

enddo

c exchange molecules among processor based on new cell indices

CC REALIGN with celltemp�VALUE�cell�i��� �� p��i�� p��i�� p��i�� p�i�

CC �� cell�i�� lcr�i�

�	

c loop over cells � molecules to reindex molecules to new cells

do i � �� n	cells

IC��i� � �

enddo

do i � �� n	moles

IC��cell�i�� � IC��cell�i�� � �

enddo

M � �

do i � �� n	cells

IC��i� � M

M � M � IC��i�

IC��i� � �

enddo

do i � �� n	moles

IC��cell�i�� � IC��cell�i�� � �

j � IC��cell�i�� � IC��cell�i��

lcr�j� � i

enddo

Data structures and layout

The following declaration pseudo�code de�nes the variables used above�

c create a Translation Table for cell�based data structures

C TEMPLATE� dimension�MAXCEL� �� celltemp

c distributed array definitions

real� dimension�MAXCEL� �� c�� c�

integer� dimension�MAXCEL� �� IC�� IC�� maparray

real� dimension�MAXMOL� �� p�� p�� p�� p

integer� dimension�MAXMOL� �� lcr� cell

C c�� c� � physical quantities associated with cells �e�g� temperature�

C p�� p� � x� y coordinates of molecule velocity

C p�� p � x� y coordinates of molecule position

C IC� � number of molecules in a cell

C IC� � global index of the starting molecule of a cell

C lcr � location where i�th molecule is stored�

C i�e�� if lcr�i� � j� then the information of i�th molecule

C is stored in p��j� etc�

c initial BLOCK distribution

�

C DYNAMIC� distribute �BLOCK� �� celltemp

C DYNAMIC� align with celltemp �� c�� c�� IC�� IC�� maparray

C DYNAMIC� distribute �BLOCK� �� p�� p�� p�� p� lcr� cell

����� Workarounds for HPF��

To implement this code in HPF�� would require static assignments of cells and molecules to pro�
cessors� rather di�cult given that the dependence of these on input data and changes dynamically
during the execution� The main performance obstacle in HPF�� is achieving good load balancing�

����� Requirements for HPF��

Desired extensions

Highly e�cient implementation of DSMC can be obtained provided support for irregular and dy�
namic distribution of data and iterations and for generalized reductions� Useful extensions include�

� Irregular Mapping of Arrays ������
For this application� the dynamic remapping is particularly important�

� Parallel reductions ������
The collection of molecules into lists for batched communication between processors can be
represented as a parallel reduction� Compilers cannot detect that an procedure manipulating
lists is really a set insertion operation that can be reassociated� a directive is required�

Depending on the level of compiler support expected� the following additional extensions may
help or hinder optimiization�

� Iteration Mapping ������
The mapping of iterations to processors should be done in conjunction with the mapping of
the irregular arrays to maximize locality�

� Communication Pattern Reuse ������
Acceptable levels of reuse should be achievable automatically by the compiler�

Example pseudo
code

The main loop requires minimal rewriting with support for map arrays and a Fortran�D�style
reduction intrinsics�

The di�culties with this code involve dynamic remapping of cells and dynamic motion of
particles between cells� To support remapping of cells� distributions based on map arrays are
needed� Motion of particles between cells can be treated as a complex form of reduction see
discussion in requirements part��

Critical Section pseudo
code

The movement of molecules between cells can also be represented using critical sections� The
straightforward translation will require communication on every iteration� but this may be accept�
able on some machines and eliminated by a smart compiler on others�

The idea is to use DO INDEPENDENT to express the obvious �ne�grained parallelism over particles
and over cells� but to allow updates to shared data structures with critical sections� We use one

��

lock per cell to guard the addition and deletion of particles to the per cell lists� An iteration only
excludes others updating the same cell from concurrent entry into the critical section�

type �particle� particles�nparticles�

type �cell� cells�ncells�

integer map	cells�ncells�� map	particles�nparticles�

do t � �� tmax� delta	t

if �remapping	needed� then

recompute the cell mapping� map	cells

�HPF�� REDISTRIBUTE cells�map	cells�

determine map	particles from cell member lists

�HPF�� REDISTRIBUTE particles�map	particles�

endif

�HPF� INDEPENDENT NEW new	cell� old	cell

do i � �� nparticles �on owner clause here �

particles�params�i� � updated particle parameters

new	cell � new owner of this particle

old	cell � particles�owner�i�

particles�owner�i� � new	cell

if �old	cell �ne� new	cell� then

�HPF�� CRITICAL �old	cell��ncells�

remove particle i from appropriate list on old	cell

�HPF�� END CRITICAL

�HPF�� CRITICAL �new	cell��ncells�

add particle i to appropriate list on new	cell

�HPF�� END CRITICAL

endif

enddo

�HPF� INDEPENDENT

do cellno � �� ncells �on owner clause here �

call local	collisions�cellno�

enddo

enddo

Context of extensions

There is a limited implementation of user�de�ned reduction operations in the Syracuse Fortran	
D
compiler� the performance achieved is discussed in �����

��� Sparse Cholesky Factorization

This section was contributed by Kalluri Eswar� C��H� Huang and P� Sadayappan� all of Ohio State
University feswar�chh�sadayg%cis�ohio�state�edu��

��

����� Application Description

Sparse Cholesky factorization involves determining a lower triangular matrix L such that LLT #
A� where A is a given sparse symmetric positive de�nite matrix� This is the computationally
dominant step in one common method of direct solution of a sparse linear system of equations
Ax # b� The solution of large sparse linear systems of equations is commonly required in a
number of scienti�c�engineering application domains such as Lattice�Gauge Theory� Computational
Fluid Dynamics� Geodetic Modeling and Reservoir Simulation� Structural Mechanics and Dynamics�
Electronic Device Simulation� and VLSI Circuit Simulation ���� ����

It is often the case that the Cholesky factorization of several matrices with the same sparsity
structure may be required� In such situations� the costs of any analysis of the sparsity structure
to determine� for example� a reordering permutation for the matrix� or a mapping of the matrix
elements to processors� may be amortized over several uses of the information computed� during
the actual numerical factorizations�

The underlying problem

The sparse Cholesky factorization computation may be considered to consist of two main kinds
of operations� the normalize operations� and the update operations� The normalize operations
are performed on each column in the matrix� and involve scaling the o��diagonal elements in a
column by the diagonal value� An update operation involves two columns of the matrix� one called
the source and the other the target� Not all pairs of columns are necessarily involved in update
operations� The set of update operations that need to be performed depends on the sparsity
structure of the matrix ����� An update operation involves subtracting multiples of some elements
in the source column from corresponding elements in the target column�

The elements of a sparse matrix are stored using some compact storage scheme where only
the nonzero elements of the matrix are actually stored� Accessing elements of the matrix then
requires an extra level of indirection in the array subscripts� contributing to the irregularity of the
computation� The sparsity structure of the matrix also determines a partial order in which the
normalize and update operations may be carried out� Since the sparsity structure can� in general�
be irregular� the computation structure is also usually irregular�

Favored parallel algorithms

Most of the parallel algorithms for sparse Cholesky factorization on distributed�memory multipro�
cessors have used the column level of granularity� i�e�� the matrix elements are distributed among
the processors so that all elements of a column reside on the same processor ����� The fan�out �����
the fan�in ���� and the kji�agg�sup ���� ��� algorithms fall in this class� Algorithms that operate at
a �ner level of granularity� namely� blocks of elements in the matrix� have been shown� under many
situations� to reduce the communication overhead incurred during the parallel factorization� Two
members of this class of algorithms are the block fan�out algorithm ���� and a parallel multifrontal
algorithm presented in ����� A discussion of the issues to be addressed in mapping the data and
the computation of sparse Cholesky factorization may be found in �����

Whatever the level of granularity used� the essential problem with expressing this computation
using HPF is the presence of nested doacross loops� where the dependences are determined by the
sparsity structure of the matrix� The canonical and baseline versions of the application provided
use column�level algorithms�

��

Detailed algorithm

The factorization code consists of two parts� a sequential part and a parallel part� The sequential
part reads in the structure of an un�lled symmetric sparse matrix� It then uses the quotient mini�
mum degree QMD� reordering algorithm ���� to determine a permutation of the matrix columns
and rows that would result in low �ll�in extra nonzeros� in the Cholesky factor� The �lled structure
of the matrix is then determined� The supernodes ��� in the �lled matrix are identi�ed� Supernodes
are essentially groups of columns in the matrix sharing a common nonzero structure� Exploitation
of supernodes can help reduce the factorization time due to many factors� which are discussed in
����� Since it is convenient for the columns in the same supernode to be consecutively numbered�
a renumbering of the matrix columns and rows takes place to achieve this� This does not cause
any change in the number of nonzeros� The matrix is then initialized with random nonzero values�
with care being taken to ensure postive de�niteness� The next step in the sequential part is to be
determine the mapping of the columns of the matrix to processors� This is done by constructing
a tree called the elimination tree ���� and using a heuristic called recursive partitioning ���� ����
The mapping algorithm maps supernodes to groups of processors� The nodes in each supernode
are distributed among the processors in its assigned group in a block fashion� causing the creation
of minisupernodes on each processor� Nodes in a minisupernode will also have the property of
sharing a common nonzero structure� as nodes in a supernode do� The matrix structure using the
�nal numbering chosen�� other information useful for the factorization� and the matrix values are
written out as a last step by the sequential part�

The parallel part is based on the fan�out algorithm mentioned above� The variant implemented
by the code uses supernodes� The supernodal fan�out algorithm is presented in pseudo�code below�

Algorithm supernodal fan�out

On each processor do

count �� number of owned columns
for each owned leaf k do

normalize column k

if k is the last column in its minisupernode then
send minisupernode containing k to processors needing it

else

send column k to myself
end

count �� count� �
end

while count �� � do
receive a column k or a minisupernode ending in column k

if a column k is received then

for each column j after k in its minisupernode do
update column j using column k �dense�

end

else

for each owned column j updated by column k do

for each column k� in minisupernode do
accumulate update of column k� to column j �dense�

end

update column j using accumulated values �sparse�
if column j is completely updated then

normalize column j

if j is the last column in its minisupernode then
send minisupernode containing j to processors needing it

��

else

send column j to myself
end

count �� count� �
end

end

end

end

end

end supernodal fan�out

The computation on each processor is driven by the arrival of a normalized column or a
minisupernode that is completely normalized� For simplicity� it is assumed that each processor
sends columns and minisupernodes to itself� A received column is used to update subsequent nodes
in its minisupernode� A received minisupernode is used to update all the targets of the nodes in
the minisupernode� In either case� columns that have been completely updated are normalized and
sent to other processors that need to use them for update operations�

Data structures and layout

Some of the important data structures used by both the sequential part and the parallel part are�

xlnz This array is used to determine the number of nonzeros below the diagonal in each column�
xlnz�j����xlnz�j� gives this number for column j�

nzsub This array contains� for each column� the row numbers of the nonzeros below the diagonal
in that column� The row numbers are kept in increasing order� If two consecutive columns
share the same nonzero structure� this information will not be duplicated in this array� The
length of this array may� therefore� be smaller than the number of nonzeros in the strictly
lower triangular part of the matrix�

xnzsub This array contains� for each column� an index into the array nzsub where the row numbers
of the nonzeros in that column begin� In conjunction with the array xlnz� the nonzero
structure of each column in the matrix may be determined by looking at the appropriate
portion of the array nzsub�

mylnz This array contains the actual matrix and after factorization� the Cholesky factor� values�
The values are arranged in sequence based on column number� and within each column ordered
by row number� For the parallel version� this array is distributed among the processors� so
that each processor�s mylnz array contains only the columns that have been mapped onto
that processor� The values continue to be stored in increasing order of the column number�
and in increasing row number order within each column�

owner This array contains the identifying number of the processor to which each column is mapped�

����� Workarounds for HPF��

No method other than using extrinsics and explicit message passing seems possible in HPF���

��

����� Requirements for HPF��

Desired extensions

Sparse Cholesky factorization is characterized by the presence of doacross loops see Section �������
HPF needs to provide mechanisms for expressing nested doacross loops� In particular� there is
a need for a way to specify the partial order for the execution of the di�erent iterations� There
should also be a way to specify how the mapping of iterations to processors should be done� Quite
sophisticated techniques are needed in the case of sparse Cholesky factorization for deciding the
mapping of the computation� It is inconceivable that a general mapping strategy incorporated into
the HPF system would be able to achieve performance close to that achieved by speci�c techniques
such as recursive partitioning� used in the code described above�

Two constructs�clauses are suggested as possible extensions to HPF� The �rst is a when clause�
This clause is to be used in conjunction with a do loop that has been designated as a doacross loop�
The when clause could have the syntax

when �logical variable�

The semantics of the clause are that the iteration of the doacross loop may proceed with execution
only when the logical variable in the when clause is true� The second clause suggested as an
extension is a on clause� to be used in conjunction with loops of all kinds� This clause would appear
somewhere inside a loop� and could have the following syntax

on �integer expression�

The semantics of the clause are that the iteration of the loop imemdiately enclosing the clause
should be mapped onto the processor whose identifying number is given by the integer expression
speci�ed in the on clause see Section �������

Example pseudo
code

A fan�out algorithm for sparse Cholesky factorization is presented here that uses the extensions to
HPF suggested above� To simplify the presentation� a nonsupernodal version is used� A supernodal
version would make use of the new clauses in essentially the same manner as the nonsupernodal
version�

Algorithm fan�out

HPF�� INDEPENDENT on owner�k�
do k � �� n

if column k is a leaf then
normalize column k

ready�k� �� true
else

ready�k� �� false
end

end

HPF�� DOACROSS when ready�k�
do k � �� n

HPF�� INDEPENDENT on owner�j�
do j � f columns updated by column k g

update column j using column k

if column j is completely updated then

normalize column j

��

L�� do time # �� timesteps

C Convection Phase�

L�� do i # �� NPOINTS

xi� # xi� � Fyi�� yi���� yi�� yi���� zi��

end do

y��NPOINTS� # x��NPOINTS�

C Reaction Phase�

L�� do i # �� NPOINTS

zi� # Adaptive Solverxi��

end do

end do

Figure ���� Overview � Combustion Code

ready�j� �� true
end

end

end

end fan�out

Context of extensions

���� Flame Simulation

This section was contributed by Paul Havlak of the University of Maryland based on information
in ��	� ����

����� Application Description

The underlying problem

This code performs a detailed time�dependent� multi�dimensional simulation of hydrocarbon �ames�
The calculation cycles between two distinct phases� The �rst phase convection� calculates �uid
convection over a Cartesian mesh� The second phase reaction� solves the ordinary di�erential
equations used to represent chemical reactions and energy release� As the chemical combustion
proceeds at varying rates across the simulated space� so does the computational load varies greatly
between mesh points� An adaptive method is required to balance the load�

Algorithm

Figure ��� presents a simpli�ed one dimensional version of this code� The convection phase
loop nest L�� consists of a sweep over a structured mesh involving array elements located at
nearest neighbor mesh points� The reaction phase loop nest L�� involves only local calculations�
The computational cost associated with the function Adaptive Solver depends on the value of xi��

��

It is clear that the cost of Adaptive Solver can vary from mesh point to mesh point� The cost of
Adaptive Solver at a given mesh point changes slowly between iterations of the outer loop L��

There are a number of strategies that can be used in partitioning data and work associated
with this �ame code� If the convection calculations comprise the bulk of the computation time� it
would be reasonable to partition the mesh arrays x� y and z in Figure ���� into equal sized blocks�

However� the reaction calculations loop nest L� in Figure ���� usually comprise at least half
of the total computational cost� A majority of the work associated with the reaction phase of the
calculation is carried out on a small fraction of the mesh points� The current approach involves
maintaining a block mapping of the mesh arrays x� y and z� during the convection phase� In
order to ensure a good load balance during the reaction phase� only expensive reaction calculations
are redistributed� In Figure ���� array element xi� must be transmitted in order to redistribute the
reaction calculation for mesh point i� Once the reaction calculation is carried out� the solution zi�
is returned to the processor to which it is assigned� At a given mesh point� the cost associated with
a reaction calculation generally varies gradually as a problem progresses� This property provides
a way to estimate reaction calculation costs in the subsequent computation step� Mesh points are
sorted according to their predicted costs� and the most costly grid points are moved �rst to reduce
the communication involved in balancing the load�

����� Workarounds for HPF��

One could use a regular� static HPF�� distribution of the data and not worry about the workload�
The convection phase uses such a distribution anyway� The load imbalances in the reaction phase
can cost some �� percent of performance for �a moderately detailed reaction mechanism�� and
would get worse with more complicated chemistry�

����� Requirements for HPF��

The optimizations employed in this implementation require the ability to redistribute workload in a
dynamic and irregular manner see Section ������� This implementation uses the CHAOS runtime
support library� not at a particularly high level of language abstraction yet�

���� Fock Matrix Construction

This section was contributed by Ian Foster of Argonne National Laboratory� The benchmark
Hartree�Fock code described in these notes was constructed by Robert Harrison of Paci�c Northwest
Laboratory�

������ Application Description

The Fock matrix construction problem arises in the Hartree�Fock method for ab initio computa�
tional chemistry see ���� for an introduction��

The core of this problem is the quadruply�nested loop illustrated in Figure ���� Approximately
N� integrals must be computed� each requires data from six elements of a density matrix� D� and
contributes to six elements of a Fock matrix� F � Both D and F have size N �N and can be large
N is commonly in range �

��

� chemists would like to solve problems �
 times larger�� The
cost of an integral is strongly data dependent� but may range from tens to hundreds of �oating
point operations�

��

do i � ��ni

do j � ��nj

do k � ��nk

do l � ��nl

I � compute	integral�i�j�k�l�

F�i�j� � F�i�j� � I�D�k�l�

F�k�l� � F�k�l� � I�D�i�j�

F�i�k� � F�i�k� � I�D�j�l�

F�i�l� � F�i�l� � I�D�k�l�

F�j�l� � F�j�l� � I�D�i�k�

F�j�k� � F�j�k� � I�D�i�l�

enddo

enddo

enddo

enddo

Figure ���� Logic for Fock matrix construction problem�

An e�cient parallel algorithm must both map integrals to processors dynamically and block
integrals and communications so that fewer than �N� messages are required to communicate the
D and F values�

Existing parallel implementations create one �worker� task per processor ���� �
�� Data are
distributed in a blocked fashion� Each task both performs computation and generate requests
for data sub�blocks� Requests for data arrive asynchronously and can be serviced either using an
interrupt�driven receive� a polling operation� or a separate �data server� thread�

������ Workarounds for HPF��

It is not clear how to achieve reasonable performance with HPF���

������ Requirements for HPF��

This problem can be expressed using reductions or critical sections discussed in Section ������
However� this does not address the need to block and map integrals� which presumably either
requires additional directives or must be discovered by the compiler�

���� FFT
 Fast Fourier Transform �TASK�

This section was extracted from the Fx benchmarks document by O�Hallaron et al� One way to
the Fx project home page is�

http���www�cs�cmu�edu������afs�cs�cmu�edu�project�iwarp�member�fx�public�www�fx�html

The full Fx task�parallel benchmark suite is available at

ftp���warp�cs�cmu�edu�usr�anon�fx�codes�tpsuite

�	

Figure ���� �D FFT task graph for one input vector

Input and output are sequences of vectors reshaped as �D arrays� Nodes labeled trans perform
a transpose operation� nodes labeled col FFTs perform a set of �D FFTs on the columns of its
input array� and the node labeled scalemultiplies each element of its input array by a constant� To
exploit locality in the memory subsystem� the program implements each set of row�wise operations
as a transpose followed by a set of column�wise operations� This speci�c order is an artifact of the
fact that Fortran �� stores matrices in column�major order� If the example program were written in
C� each column�wise operation would be implemented as a transpose followed by a set of row�wise
operations�

Mapping the �D FFT onto a parallel system is easy in some ways and challenging in other ways�
The problem is easy in the sense that the column�wise FFTs and the scaling operation are perfectly

�

Figure ���� �D FFT task graph for one input array

������ Workarounds for HPF��

Section ���� discusses other ways to implement the FFT�

������ Requirements for HPF��

This implementation of FFT employs a task�parallel approach� see Section ������

���� Narrowband tracking radar

This section was extracted from the Fx benchmarks document by O�Hallaron et al� One way to
the Fx project home page is�

http���www�cs�cmu�edu������afs�cs�cmu�edu�project�iwarp�member�fx�public�www�fx�html

The full Fx task�parallel benchmark suite is available at

ftp���warp�cs�cmu�edu�usr�anon�fx�codes�tpsuite

������ Application Description

The underlying problem

The narrowband tracking radar benchmark was developed by researchers at MIT Lincoln Labora�
tories to measure the e�ectiveness of various multicomputers for their radar applications ����� It

��

Figure ���� Radar task graph for one input array

Favored parallel algorithms

The program inputs data from a single sensor along c # � independent channels� Every � mil�
liseconds� for each channel� the program receives d # ��� complex vectors of length r # �
� one
after the other in the form of an r � d complex array A assuming the column major ordering of
Fortran�� At a high�level� each input array A is processed in the following way� �� Corner turn
the r� d input array to form a d� r array� �� Perform r independent d�point FFTs� �� Convert
the resulting complex d� r array to a real w� r subarray� w # �
� by replacing each element a� ib
in the w� r subarray with its scaled magnitude

p
a� � b��d� �� Threshold each element ajk of the

subarray using a cuto� that is a function of ajk and the sum of the subarray elements� Elements
that are above the threshold are set to unity� elements below the threshold are set to zero�

The corner turn operation is equivalent to a transpose� so it can potentially induce a complete
exchange where each processor communicates with every other processor� As with the �D FFT� the
column FFTs� scaling� and thresholding operations can be naturally expressed using conventional
data parallel constructs� Further� the reduction operation requires an e�cient reduction mechanism�
However� the most interesting computational property of the radar benchmark is the fact that the
size parameters r� d� c� and w are determined by mother nature and the properties of current sensor
technology� The luxury of simply increasing the data set size simply does not exist in this case�
The amount of available low�level data parallelism is limited� so additional parallelism must come
from higher�level task parallelism� Like the FFT examples� input data sets are independent� so
both replication and clustering of the task graph are possible�

���� Multibaseline stereo

This section was extracted from the Fx benchmarks document by O�Hallaron et al� One way to
the Fx project home page is�

http���www�cs�cmu�edu������afs�cs�cmu�edu�project�iwarp�member�fx�public�www�fx�html

The full Fx task�parallel benchmark suite is available at

ftp���warp�cs�cmu�edu�usr�anon�fx�codes�tpsuite

��

Figure ���� Multibaseline stereo task graph for one input data set

������ Application Description

The underlying problem

The multibaseline stereo uses an algorithm developed at Carnegie Mellon that gives greater ac�
curacy in depth through the use of more than two cameras ����� It is an interesting program for
studying task parallelism because it contains signi�cant amounts of both inter�task and intra�task
communication�		�� and because� like the radar example� the size of the input data sets cannot
be easily increased� Our implementation is adapted from a previous data�parallel implementation
written in a specialized image processing language �	���

Favored parallel algorithms

Figure ��� shows the task graph for the stereo program� Input consists of three m � n images
acquired from three horizontally aligned� equally spaced cameras� One image is the reference
image� the other two are match images� For each of �� disparities� d #
� � � � � ��� the �rst match
image is shifted by d pixels� the second image is shifted by �d pixels� A di�erence image is formed
by computing the sum of squared di�erences between the corresponding pixels of the reference
image and the shifted match images� Next� an error image is formed by replacing each pixel in the
di�erence image with the sum of the pixels in a surrounding �� � �� window� A disparity image

is then formed by �nding� for each pixel� the disparity that minimizes error� Finally� the depth of
each pixel is displayed as a simple function of its disparity�

The stereo program requires e�cient mechanisms for broadcasting and reducing large data sets�
The computation of the di�erence images requires simple pointwise operations on the three input
images and can thus be naturally expressed with Fortran 	
 array statements� The computation
of the error images is somewhat more interesting� being similar to a convolution operation� The
convolution can be modeled as a DOALL where the loop iterations operate on overlapping regions
of the image� which means that processors must communicate before the loop iterations can begin
executing� As with the FFT and radar programs� the data sets are independent� so both replication
and clustering of the task graph are possible�

���� Airshed simulation

This section was extracted from the CMU Fx benchmarks document by O�Hallaron et al� One way
to the Fx project home page is�

http���www�cs�cmu�edu������afs�cs�cmu�edu�project�iwarp�member�fx�public�www�fx�html

��

Figure ���� Task graph for one hour of the airshed simulation

The full Fx task�parallel benchmark suite is available at

ftp���warp�cs�cmu�edu�usr�anon�fx�codes�tpsuite

������ Application Description

The underlying problem

The airshed simulation is signi�cantly more complex than the previous examples from the Fx
benchmarks� The multiscale airshed model captures the formation� reaction� and transport of
atmospheric pollutants and related chemical species ���� ���� It is an interesting application because
it requires a dynamic task parallel model� and because di�erent parts of the application exhibit
widely varying amounts of DOALL parallelism�

The airshed application simulates the behavior of the airshed model when it is applied to
s chemical species� distributed over domains containing p grid points in each of l atmospheric
layers� Typical values are s # �� species� �

 � p � �

 grid points� and l # � atmospheric
layers� Because of the multiscale grid� the entire northeastern United States can be modeled with
problems in this size range� A total of about �

 chemical reactions are modeled�

Algorithm

The program computes in two principle phases� �� horizontal transport using a �nite element
method with repeated application of a direct solver�� followed by �� chemistry�vertical transport
using an iterative� predictor�corrector method�� Figure ��� depicts the task graph for one hour of
simulated time� Input is an l � s � p concentration array� Initial conditions are input from disk
inputhour�� and in a preprocessing phase for the horizontal transport phases to follow� the �nite
element sti�ness matrix for each layer is assembled and factored pretrans�� The atmospheric
conditions captured by the sti�ness matrix are assumed to be constant during the simulated hour�
so this step is performed just once per hour� This is followed by a sequence of steps � the number
of steps is one of the initial conditions � where each step consists of a horizontal transport phase�
followed by a chemistry�vertical transport phase� followed by another horizontal transport phase�
Each horizontal transport phase performs ls backsolves� one for each layer and species� All may
be computed independently� however� for each layer l� all backsolves use the same factored matrix
Al� The chemistry�vertical transport phase performs an independent computation for each of the
p grid points� Output for the hour is an updated concentration array� which is then input to the
next hour�

A number of interesting issues arise when we map the airshed to a parallel system� In the other
example programs we have discussed� the number of tasks is known at compile time� However�

��

in the airshed program� the number of transport�chemistry�transport steps for each hour is not
known until runtime� which implies a dynamic model of task parallelism� Also� since the output
concentration array of one hour is the input to the next hour� replication of the task graph is not
feasible� as it was with the previous example programs�

Another issue is that the preprocessing phase� the transport phase� and the chemistry phase
have very di�erent levels of obvious DOALL parallelism because the sizes of the di�erent dimensions
of the concentration array di�er by orders of magnitude� For example� the preprocessing phase
independently computes sti�ness matrices for each layer� unfortunately there are only � layers� so
the obvious DOALL approach will use � processors� To get better utilization� we must parallelize the
computation for each layer� or we must try to employ task parallelism to pipeline the computation
for each layer� or both�

The issues involved in mapping the transport phase are particularly interesting� Since there are
l # � layers and s # �� species� the transport phase could be easily implemented with doubly nested
DOALLs that consist of ��� independent loop iterations� For moderate sized parallel systems� with
say �� processors� this approach might work well� However� for larger systems� with say ���
processors� this approach uses only a fraction of the processors� As with the preprocessing phase�
we can get better utilization by either parallelizing the sparse �nite element computation a di�cult
task� or trying to use task parallelism to pipeline the computation�

The �nal issue stems from the fact that the preprocessing� horizontal transport� and chem�
istry�vertical transport phases each operate on di�erent dimensions of the concentration array� To
exploit locality in the memory hierarchy� an implementation will most likely insert the appropriate
transpose operation before each phase� On a parallel system� this can induce a complete exchange
where each processor communicates with every other processor� Again� as with the FFT and radar
examples� we see the need for an e�cient complete exchange mechanism�

��� Out�of�Core Matrix Transposition

This section was contributed by C��H� Huang� S� D� Kaushik and P� Sadayappan� all of Ohio State
University fchh�kaushik�sadayg%cis�ohio�state�edu��

������ Application Description

The underlying problem

Out�of�core matrix transposition involves performing the transposition Y # XT where X is a large
two�dimensional matrix stored in external memory� The array size is larger than the total main
memory available on the parallel machine� Since the entire array cannot �t into the collective
processor memory� an algorithm which operates on portions of the array at a time is required� Out�
of�core matrix transposition is used in several out�of�core applications such as the multi�dimensional
fast Fourier Transform and fast Fourier Transforms of large one�dimensional vectors �	��� Very large
FFT�s are required for the search of faint radio pulsars and multi�dimensional FFT�s are fundamen�
tal to a wide range of computational problems ���� such as those involved in the study of long range
climate changes ����� Work on developing a suite of I�O optimized out�of�core multi�dimensional
FFT algorithms has been targeted ���� The data sizes for these applications are expected to be in
the range of hundred Gbytes to one Tbyte�application ��	� ��� Typical FFT applications involve
square matrices with sizes which are perfect powers of two� Henceforth we consider the out�of�core
transposition of an N �N matrix� where N # �n�

��

0 1 2 3
4 5 6 7

0 1 2 3
4 5 6 7

0 2 4 6

1 3 5 7

0 2 4 6

1 3 5 7

Main Memory

(a)(b)

0 1 2 3
4 5 6 7

8 9 10 11

12 13 14 15

0 2 4 6

1 3 5 7

9 11 13

8 10 12 14

15

0 4

3 7 11

1 5 9 13

8 12

2 6 10 14

15

XYX

Pass 1 Pass 0

Figure ���� Illustration of the out�of�core matrix transposition of a �� � matrix�

Favored Parallel Out
of
Core Algorithm

A naive parallel out�of�core matrix transposition algorithm requires ON�� disk accesses but per�
forms a single pass over the input matrix� i�e�� the matrix is read into main memory and stored back
to external memory once� The proposed algorithm requires that at least two rows of the matrix �t
in a processor�s main memory and transposes an N �N matrix using ONlog� N� disk accesses
but performs log�N passes over the input matrix� The decrease in the number of disk accesses is
traded o� with an increase in the data volume� If a larger amount of main memory per processor
is available� the number of passes and disk accesses can be further reduced� The most general form
of the algorithm requires that at least �k� k �
 rows of the matrix �t into main memory and
transposes the matrix using Nlog�kN disk accesses and log�kN passes�

The sequential version of the transposition algorithm with k # � performs n passes over the
input matrix� Each pass is as follows�

�� Read input matrix into main memory two consecutive rows at a time�

�� View the two�rows as a one�dimensional array and permute the array using a stride permu�
tation�

�� Store each row at the appropriate location in the output matrix� The rows are stored at
non�consecutive locations�

�� For the next pass use the output matrix as the input matrix and vice versa�

For example� the transposition of a �� � matrix is shown in Fig� ���� The algorithm performs two
passes over the matrix� The details of pass
 are shown in Fig� ���a��

In the SPMD Single Program Multiple Data� programming model� each processor executes
the same program on a local array associated with it� In an in�core program� the local array resides
in the local memory of each processor� For out�of�core algorithms� the local array cannot �t entirely
in main memory and is stored in external memory as a separate �le� This �le may be striped across
multiple disks or localized to a single disk depending on the level of control the programmer has
over striping and data distribution on the underlying parallel �le system� This model for designing
SPMD programs for out�of�core algorithms has been proposed in �	�� and the local array for each
processor is stored in a �le referred to as the local array �le LAF�� The two�dimensional array is
distributed using a block� �� distribution� i�e�� each processor�s LAF contains a block of rows of size
N
P � where P is the total number of processors� The SPMD node program for processor p performs
n�passes� Each pass is as follows�

��

LAF 0

LAF 1

Main Memory - Proc 0

Main Memory - Proc 1

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

0 2 4 6 8 10 12 14

32 34 36 38 40 42 44 46

1 3 5 7 9 11 13 15

33 35 37 39 41 43 45 47

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14

1 3 5 7 9 11 13 15

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

33 35 37 39 41 43 45 47

32 34 36 38 40 42 44 46

LAF 0

LAF 1

Figure ��	� Illustration of the out�of�core matrix transposition of an 	� 	 matrix on two processors�

�� Read input local array �le into main memory two rows at a time�

�� View the two�rows as a one�dimensional array and permute the array according to a stride
permutation�

�� Determine the locations of the two rows in the output matrix and the corresponding LAF�s�
Store the rows at appropriate locations in the corresponding LAF�s�

�� For the next pass use the output LAF as the input LAF and vice�versa�

Note that in step �� a processor will need to write to the LAF�s of other processors� The �rst pass
in the transposition of an �� � matrix on two processors is shown in Fig� ��	�

Detailed Algorithm

Consider an N � N array A which is to be transposed and the result stored in array B� The
arrays are partitioned using a block� �� distribution into P LAF�s each� The LAF�s corresponding
to processor p contain the rows p � N

P � p � N
P � N

P � ��
 � N � ��� The node program for the
out�of�core matrix transposition is shown in Fig� ���
� In the program� LAF Ap� is the local array
�le of array A corresponding to processor p and LAF Bp� is the local array �le of array B� The
I�O statement readLAF� size�mem addr� file addr� reads a block of size size starting at location
file addr in �le LAF into memory starting at location mem addr� The write statement is similar�

������ Workarounds for HPF��

HPF�� does not provide support for out�of�core methods� An HPF�� implementation would have to
employ low�level library and system calls� increasing the complexity and reducing the portability�

��

do k #
� n� �
do i� #
� N

��P � �
��Read the i��th pair of rows into M
 � � �N � ����
readLAF Ap�� � �N�M�
�� � � i� �N�
��Perform stride permutation on the two rows��
M
 � � �N � �� # L�N���M
 � � �N � ���
��Store the rows into appropriate LAF�s��
j� # f� � i� � NP � � p�� j� # f� � i� � NP � � p� ���
lf� # j��

N
P �� lf� # j��

N
P �

writeLAF Blf��� N�M
�� j�� NP � � lf�� �N��
writeLAF Blf��� N�MN�� j�� NP � � lf�� �N��

enddo

Interchange LAF A and LAF B
enddo

Figure ���
� Out�of�core Matrix Transposition node program for node p�

������ Requirements for HPF��

Desired extensions

Out�of�core matrix transposition involves working with �xed size data structures with sizes larger
than the collective memory of the parallel machine� The provision of the following features would
facilitate the expression and compilation of out�of�core algorithms in HPF�

�� Declaration of out�of�core data structures� These declarations would provide information
about the creation of �les� in external memory see Section �������

�� Control over stripe size for distributing �les� For the out�of�core matrix transposition algo�
rithm proposed� the basic unit of transfer between main and external memory is a row of the
matrix� Storing the elements of a row contiguously would lead to an exploitation of spatial
locality Section �������

�� Control over the data distribution of the out�of�core data structures�

Context of extensions

The sequential version of the out�of�core algorithm was presented in ����� in the context of the
tensor product project at The Ohio State University�

���� FFT
 Fast Fourier Transform �VIEWAS�

This section was contributed by C��H� Huang� P� Sadayappan and S� K� Gupta� all of Ohio State
University fchh�saday�sandeepg%cis�ohio�state�edu��

��

���
�� Application Description

The underlying problem

The FFT is an ONlogN�� algorithm to compute the matrix�vector product y # F Nx� where
F N is theN�N discrete Fourier transform DFT�matrix� In the literature� many FFT algorithms
have been proposed� These algorithms can be broadly classi�ed into multiplicative FFT algorithms
and additive FFT algorithms� The class of additive FFT algorithms contains algorithms which
are variations of the Cooley�Tukey FFT algorithm� e�g�� the Pease FFT� Korn�Lambiotte FFT�
and Stockham FFT �VanL	��� On the other hand� multiplicative FFTs are derivatives of the
Good�Thomas FFT� The additive FFTs are more popular than the multiplicative FFT algorithms
since they are simpler to implement� We only consider additive FFTs here� Henceforth� an FFT
algorithm will refer to an additive FFT algorithm� Furthermore� we only consider ��D FFT since
multidimensional FFTs can be implemented as ��D FFTs along each of the dimensions of the input
array�

Favored parallel algorithm

On a distributed�memory machine� transpose�redistribution based FFTs have been found to per�
form better than FFT implementations using point�to�point communication� This is because trans�
pose�redistribution based FFT requires a lower communication volume than the FFT with point�
to�point communication for su�ciently large N�� With a transpose�based FFT� the input and
output array are viewed logically as ��D arrays� For performing a ��D FFT of size N # N� �N��
one way to perform a transpose�based FFT is as follows�

�� Reshape the input ��D array x as an N� � N� ��D array� Distribute it according to some
�� cyclicb�� distribution�

�� Transpose array x�

�� Perform FFT along the columns of xT locally on each processor�

�� Transpose array x�

�� Perform FFT along the columns of x locally on each processor� and

�� Transpose array x to obtain the result�

Note that the above transpose�based FFT requires three transpositions� which amounts to three
redistributions� As redistribution involves an all�to�many communication pattern� it is important
to minimize the number of redistributions to reduce the communication overhead� As shown in
�VanL	��� a transposition�based FFT requiring only a single transposition can also be developed�

Redistribution based FFTs have been presented in �GHJS	��� It is shown that using the
Stockham FFT algorithm� the ��D FFT can be implemented using a single redistribution step�
This is possible because the bit�reversal permutation is embedded in the computation steps of the
Stockham FFT algorithm and therefore does not require the extra bit�permutation step needed in
other FFT algorithms� Note that the last transposition in the above FFT implementation is due to
bit�reversal� The single redistribution FFT algorithm assumes that N � P �� In general� a ��D FFT
can be implemented using a single redistribution whenever N is a multiple of P �� For simplicity
assume that N # �m and P # �q� Then� a ��D FFT can be performed as follows�

�� Distribute the array x cyclically�

�	

�� Perform the �rst m� q steps of the computation locally on each processor�

�� Redistribute the array to a cyclicP � distribution�

�� View the distribution of array x as a cyclic distribution� and

�� Perform the remaining q steps of the computation locally on each processor�

Step � involves changing the view of the distribution from block to cyclic� without actually moving
the data elements� as described in Section ������ An implicit assumption for the change of the view
operation is that the number of elements on each processor are the same under both the old and
the new distributions�

The parallelism in Step � and Step � can be expressed in HPF�� using the INDEPENDENT

directive� However� the HPF INDEPENDENT directive only asserts that iterations of a loop do not
interact or interfere with each other� To generate code for a distributed�memory machine� an HPF
compiler also needs to decide on which processor each iteration of the loop should be executed�
The mapping of the loop iterations to the processors is important as it has implications on the
communication requirements of the resulting code� In general� an INDEPENDENT loop may require
some initial communication to copy values of data elements used within the iteration and some
�nal communication to copy back the values of non�local data which were modi�ed within the
iteration� However� in some cases this communication could be reduced or even eliminated by
mapping iterations to the processors in a manner which localizes all or most of the data accessed
within each iteration� The presence of complex indexing functions in the loop body� as in the case
of FFT� may hinder such optimizations� Hence� there is a need for a mechanism for the programmer
to specify the mapping of iterations to processors�

���
�� Workarounds for HPF��

Except for the step involving change of the view of distribution� all other steps in the Stockham
FFT algorithm can be directly expressed in HPF��� The view changing step can be expressed by
an array copy� For example� the pseudo�code for the array copy corresponding to ��D array x with
distribution d� viewed as having distribution d� is as follows�

!HPF" PROCESSOR PROCP�
!HPF" DISTRIBUTE d�� DYNAMIC ONTO PROC �� x

!HPF" DISTRIBUTE d�� ONTO PROC �� y
y� � N� # x� � N�

!HPF" REDISTRIBUTE d�� ONTO PROC �� x
!HPF" INDEPENDENT NEW i

DO p # �� P� �

DO i # �� num of local elements

xlocal to globald�� p� i�� # ylocal to globald�� p� i��
END DO

END DO

where local to globald�� p� i� return the global index corresponding to the local index i on
processor p�

�

���
�� Requirements for HPF��

Desired extensions

VIEWAS	 It would be desirable for HPF to provide a construct for changing the view of the distri�
bution of an array� The VIEWAS construct could have the following syntax�

!HPF" VIEWAS �target�distribution� �� �array�name�

The semantics of the VIEWAS construct is that the distribution of the array �array�name�
is henceforth treated to be �target�distribution�� No communication is required� On a single
processor� the VIEWAS directive has no e�ect�

Locality Assertion	 The information about how the iterations should be mapped to processors
can� for example� be provided by using an ON clause along with an INDEPENDENT directive�

!HPF" INDEPENDENT ON � proc array name � � map func �� LOCAL�

where � map func � is a mapping of the associated loop index to the processor index of processor
array � proc array name �� The above directive speci�es that the iterations of the following loop
do not interfere with each other and mapping the i�th iteration to processor PROCk�� where k is the
value of � map func � when the value of index variable is i� results in communication�free target
code�

Example pseudo
code

Using the VIEWAS construct and locality assertions� the radix�� Stockham FFT can be expressed
as follows�

C Size of FFT # �m� Nos� of proc� # �q� Assumption m � �q�
!HPF" PROCESSOR PROC�q�
!HPF" DISTRIBUTE CYCLIC� DYNAMIC ONTO PROC �� A

COMPLEX � ! A� � �m � ��� B� � �m�q � ��� omg
INTEGER i� k� s� m�p�q

!HPF" INDEPENDENT NEW i� k� s� B�omg� ON PROCp� LOCAL

DO p # �� �q � �

DO i # �� m� q

DO s # �� �i�� � �

C omegaN� k� # e���
p
��k��N

omg # omega�i� s�
DO k # �� �m�q�i � �

Bs � �m�i � k � �q � p� # As � �m�i�� � k � �q � p�
Bs � �m�i � k � �q � �m�i�� � p� # As � �m�i�� � k � �q � �m�i � p� � omg

END DO END DO

Ap � �m�� � �q � p � �q� # Bp � �m�� � �q � p � �q� � Bp� �m�� � �m � �q � p � �q�
Ap� �m�� � �m � �q � p � �q� # Bp � �m�� � �q � p � �q�� Bp� �m�� � �m � �q � p � �q�

END DO

END DO

!HPF" REDISTRIBUTE CYCLIC�q�� �� A
!HPF�" VIEWAS CYCLIC� �� A

��

!HPF" INDEPENDENT NEW i� k� s� B�omg� ON PROCp� LOCAL

DO p # �� �q � �

DO i # m� q� �� m
DO s # �� �i�q�� � �

omg # omega�i� �q � s� p�
DO k # �� �m�i � �

Bs � �m�i � k � �q � p� # As � �m�i�� � k � �q � p�
Bs � �m�i � k � �q � �m�i�� � p� # As � �m�i�� � k � �q � �m�q�i � p� � omg

END DO END DO

Ap � �m�� � �q � p � �q� # Bp � �m�� � �q � p � �q� � Bp� �m�� � �m � �q � p � �q�
Ap� �m�� � �m � �q � p � �q� # Bp � �m�� � �q � p � �q�� Bp� �m�� � �m � �q � p � �q�

END DO

END DO

In the above code� communication is required only to perform the redistribution� All the com�
putation before and after the redistribution can be performed locally if iteration p is mapped to
processor p�

Context of extensions

A programming environment for automatically synthesizing parallel�vector programs for block
recursive algorithms such as FFT and Strassen�s matrix multiplication has been developed at
the Ohio State University� The system is called EXTENT� EXpert system for TENsor product
Translation �DGKL�	��� Programs for redistribution based FFTs can be synthesized automati�
cally by EXTENT�

���� SpLU � Sparse LU Factorization

This section was provided by R� Asenjo� M� Ujaldon and E� L� Zapata� Dpt� of Computer Archi�
tecture� University of M&alaga SPAIN��

������ Application Description

The underlying problem

The solution of linear systems Ax # b� where matrix A has a sparse sort and huge dimensions�
plays a basic role in many �elds of science� engineering and economy�

Along this application� we assume a singular sparse matrix A with dimensions n � n in the
whole matrix there will only be � nonzero elements� such that �� n��� By exploiting the sparsity
of A� we can reduce signi�cantly the execution time and the memory required to solve the linear
system�

There are several methods for solving sparse linear systems ����� ��
��� One of them is based on
the LU factorization of A ����� As output of such a factorization� we obtain a couple of matrices� L
lower triangular� and U upper triangular�� with dimensions n � n� and the permutation vectors�
� y �� with dimension n� such that�

A�i��j # LU�ij �i� j�
 � i� j � n� ����

��

The permutation vectors� � y �� are needed due to the permutation process that takes place
during the factorization in rows and columns of A� with the aim of preserving the sparsity rate and
ensuring the numerical stability�

The linear system Ax # b may be solved in �ve stages�

�� Factorize A giving the L and U matrices and the corresponding permutation vectors� � y ��

�� Permute b according to di # b�i �
 � i � n� obtaining the d vector�

�� Solve the system Ly # d giving the y vector� This lower triangular system is solved by means
of forward�substitution�

�� Solve the system Uz # y� in order to get the z vector� This upper triangular system is solved
by using back�substitution�

�� Permute z according to x�j # zj �
 � j � n� obtaining x� the solution vector�

In this application� we will focuse our e�orts on the algorithm that computes the �rst phase
LU factorization� �� Sequential algorithms already developed for the sparse LU factorization� like
MA�� ��
� or Y��M �	��� perform several iterations� each of them involving a pivot search in the
reduced matrix� followed by a row and column swapping� and an update of range one in the reduced
matrix de�ned as a submatrix containing n� k�� n� k� elements Aij � such that k � i� j � n�
in the k� th iteration�� The choice of this pivot must be done in such a way that� on the one hand
we preserve the sparsity rate� and� on the other� the numerical stability is guaranteed�

The more widely heuristic strategy used for �nding pivots that preserve the sparsity rate is
known as Markowitz�s strategy ����� When we choose a pivot� Aij � it may create M ij # Ri �
��Cj � �� new nonzero elements in the worst case� where Ri Cj� means the number of nonzero
elements in the i � th row j � th column�� The upper bound M ij is known as Markowitz count
���� Chap� ��� The pivot will be chosen such that minimizes the Markowitz count�

Moreover� we must also ensure the numerical stability� In order to accomplish it� we must avoid
the selection of pivot elements with low absolute value� that�s why we will only accept candidate
pivots� Aij � ful�lling�

jAij j � u 	max ljAlj j� ����

where u�
 � u � � is a threshold parameter ���� Chap� ���
In this work� we show a parallel algorithm for the LU factorization of generic sparse matrices

on a distributed memory multiprocessor with mesh topology P � Q processors�� This factorization
was broach by Stappen et al� on a network of transputers �	��� The parallel code is SPMD Simple
ProgramMultiple Data�� and PVM ���� is used as a message passing interface� The data distribution
follows the philosophy of the scatter methods� Each processor stores the nonzero elements belonging
to its local matrix like a semi�ordered� two�dimensional linked list �	��� With all these features� our
code was implemented on the CRAY T�D machine �����

Favored parallel algorithms

An algorithm for distributed memory systems is the Stappen et al� �	��� Such an algorithm distin�
guishes di�erent phases� Search for pivots� rows and columns permutations� and updating of the
reduced submatrix� They also perform a detailed study of the algorithm complexity associated to

�Nevertheless� we hope to achieve results for the whole algorithm for the �nal version of the application�

��

the local storage structure of the data� The conclude claiming that the unordered two�dimensional
doubly linked�list yields minimum execution times� according to the strategy of permuting rows and
columns in the submatrix� Experimental results over a mesh up to �

 transputers� show speedups
up to �
��

We present here an algorithm for the sparse LU decomposition on distributed memory mul�
ticomputers� as Stappen et al� Our local storage structure is also a doubly linked list� but sorted
by rows and disordered by columns� what achieves less complexity and updates the matrix directly
over the data structure� Likewise� a new data distribution as the BRS �	�� will let us to focus the
problem from a point of view closer to the data�parallel programming� At the end of this work�
experimental results are showed on the CRAY T�D machine ����

Detailed algorithm

The parallel algorithm executes a number of iterations� each containing three di�erent phases�
Pivots search� rows and columns permutation� and reduced matrix and R and C vectors update�

The parallelism inherent to the sparse LU algorithm involves two issues� First of all� in the
dense case� we can parallelize the loops traversing all the updating of range one in the reduced
matrix� This parallelism is inherited by the sparse algorithm� Secondly� the sparse algorithm
allows us to perform parallel computations that must be sequentialized in the dense case� Thus� in
the sparse algorithm� it is possible to merge several updates of range one in a single update process
of multiple range m� by modifying the Markowitz strategy in such a way that we search for a
pivot set containing m compatible pivots referred to as PivotSet�� Two pivots� Aij and Akl are
compatible and independent if

Ail # Akj #
� ����

A relaxation in the compatibility criteria can be considered if we only force Akj #
� In this case�
both pivots are called partially compatible� what increases the size of PivotSet sets� whereas the
update process is more di�cult to carry out� In Figure ����� it is shown the di�erent types of
compatible pivots�

A description of the complete algorithm follows�

Parallel Sparse LU Algorithm
� # id�
� # id�
initialize R and C�
k #
�
while k � n �

f
�nd pivot set PivotSet # ir� jr� �
 � r � m�
permute rows� �i and Ri�
permute columns� �j and Cj �
update matrix elements� A�
update R and C nonzero counts�
k # k �m�

g

In the description of the algorithm showed above� we implicitly assume that each processor
s� t� performs computations over its local data� At the end of the algorithm� matrix A will have

��

αij

0 αkl

0 αij

0 αkl

αil

αij

αkl

αil

αkj

αij

αklαkj

0

Compatible Partially Compatible

Incompatible

Figure ����� Types of compatibility�

the L factor in its strictly lower triangular matrix� and the U factor in its upper triangular matrix�
Vectors � and � will store the �nal values� This parallel algorithm is based on a sequential one that
exhibits the same structure already described�

In Figure ����� we show an example of a sparse matrix with n # � and � # ���

Data structures and layout

To minimize the number of communications� we have tried to pack all the messages as many
as possible� thus reducing the communication latency time� As well� to decrease the number of
messages and duplicate the speed in the broadcast and reduce operations� messages are broadcasted
reduced� from to� the center of the rows� columns or mesh�

Following this approach� as an example� we accumulate all the incompatible pivots in the pro�
cessor P��� Q���� where we create PivotSet and� subsequently� we broadcast it with a complexity
of OP � Q����� Note that Stappen et al� create the PivotSet by considering a pipeline in the
�rst row of the mesh� in which all the pivots are passing one by one through the mesh� from pro�
cessor
� t��
 � t � Q to processor
� Q� ��� creating in this last processor the PivotSet� This
alternative increase the total number of messages and the overhead associated to the latencies�

In relationship with the local data storage� we can also choose another structure that reduces

��

�
BBBBBBBBBBBB�

�

 �

 �

 �

 �

 �

 �

 �

 	
 � �

 �� �

 �� ��

�
CCCCCCCCCCCCA

Figure ����� Sparse matrix with n # � and a # ��

the wastage of memory with respect to the linked�list one� We will name it Block Row Scatter
BRS� �	��� Lets assume the matrix A partitioned into a set of submatrices Bl� k� with dimensions
P �Q� such that Aij #kl Bst where i # k 	P � s� j # l 	Q� t
 � i� j � n�� Pairs i� j�� s� t� and
k� l� represent global� local and block indices� respectively� In order to perform the partition of
matrix A giving submatrices Bk� l�� it may be necessary to add new rows or columns containing
null elements to it� The distribution of the elements of matrix A is performed by mapping each one
of the blocks of size P �Q onto the mesh of processors� The data storage format consists of three
vectors� D� C y R� The D vector stores the nonzero values of the matrix� as they are traversed
in a row�wise fashion� The C vector contains the block column indices of the elements in the D
vector� Finally� the R vector stores the indices in the D vector that correspond to the �rst non�zero
element of each row� By convention� we de�ne one additional element in R vector with the value
of the number of elements in D plus one� The memory spent is drastically reduced� although the
access to the data by columns may be slowed down� Figure ���� show the BRS local storage for
the matrix of the �gure ���� onto a �� � mesh�

'

�
BBB�

D

�
�
	
�

�
CCCA

�
BBB�

C

�
�
�
�

�
CCCA

�
BBBBB�

R

�
�
�
�
�

�
CCCCCA

'�

�
BBB�

D

�
�
�

�

�
CCCA

�
BBB�

C

�
�
�
�

�
CCCA

�
BBBBB�

R

�
�
�
�
�

�
CCCCCA

'�

�
BBB�

D

�
�
�
��

�
CCCA

�
BBB�

C

�
�
�
�

�
CCCA

�
BBBBB�

R

�
�
�
�
�

�
CCCCCA

'�

�
BBB�

D

�
��
��
�

�
CCCA

�
BBB�

C

�
�
�
�

�
CCCA

�
BBBBB�

R

�
�
�
�
�

�
CCCCCA

Figure ����� BRS storage�

��

������ Workarounds for HPF��

The sparse LU algorithm presented above is a parallelization by hand that increases the inherent
parallelism of the algorithm by grouping several individual steps in a �diagonal block� step capable
of parallelization� Such an strategy requires to permute rows and columns in the sparse matrix
before entering the update loop� what demands a dynamic data type as double linked lists to embed
or remove new elements�

This kind of algorithm cannot be implemented in HPF because of the handling� partitioning
and distribution of dynamic data structures� However� besides this algorithm� there is another
alternative that� although neither can be implemented in HPF� it is closer to what a data�parallel
language expects as input�

This alternative is the one we show below� It computes N steps in the main loop� instead
of less steps involving diagonal blocks� In this way� we are losing parallel performance� but the
code is straightforward� We have used new data�parallel extensions we have designed for sparse
and irregular computation� including speci�c representations as the CCS � Compressed Column
Storage format used below� and distributions as the BRS � Block Row Storage used below too�
for sparse problems� These elements have been included into the Vienna�Fortran language and the
compiler that accepts them is currently under development �	���

C HPF algorithm with new Vienna�Fortran sparse directives �highlighted

C with �VF�� for computing the LU decomposition in an NxN sparse matrix

C with �ALPHA� nonzero elements�

PARAMETER�X�NUMBER	OF	PROCESSORS�DIM����

PARAMETER�Y�NUMBER	OF	PROCESSORS�DIM����

�HPF� PROCESSORS MESH�X�Y�

PARAMETER �ALPHA���� N � ���

INTEGER I� J� K� L� M�� M�

�VF� REAL A�N�N�� SPARSE�CCS�DA� CA� RA��� DYNAMIC

�VF� DISTRIBUTE A �� �CYCLIC� CYCLIC�

DO I � �� N��

J � �

DO WHILE ��RA�CA�I��J� �LT� I� �AND� �J �LE� �CA�I����CA�I����

J � J � �

ENDDO

IF �J �GT� �CA�I����CA�I���

WRITE����� �ERROR� ZERO IN THE DIAGONAL ELEMENT�

STOP

ENDIF

Diag � DA�CA�I��J� � Always must be an element in the diagonal

�HPF� INDEPENDENT

DO K � J��� CA�I����CA�I� � Update all the elements below diagonal

DA�CA�I��K� � DA�CA�I��K� � Diag

ENDDO

�HPF� INDEPENDENT

��

DO K � J��� CA�I����CA�I� � Traverse the rows with items in the i�th col

�HPF� INDEPENDENT

DO L � I��� N � Traverse all the colums to find items in the i�th row

M� � �

DO WHILE ��M� �LE� �CA�L����CA�L��� �AND� �RA�CA�L��M�� �LT� I��

M� � M� � �

ENDDO

IF �M� �LE� �CA�L����CA�L��� THEN � No items in this subcolumn

IF ��RA�CA�L���M���� �EQ� I� THEN � Found a item to make a pair

M� � M���

DO WHILE ��M� �LE� �CA�L����CA�L��� �AND�

�RA�CA�L��M�� �LT� RA�CA�I��K���

M� � M� � �

ENDDO

IF �M� �LE� �CA�L����CA�L��� THEN

IF �RA�CA�L��M�� �EQ� RA�CA�I��K�� THEN � Update existing item

DA�CA�L��M�� � DA�CA�L��M�� � DA�CA�I��K� � DA�CA�L��M����

ELSE

The element isn"t in the matrix �� Fill�in between two

elements in this row�

Fill�in in dense coordinates A�RA�CA�I��K�L�

ENDIF

ELSE

The element isn"t in the matrix �� Fill�in after last

item of this row�

Fill�in in dense coordinates A�RA�CA�I��K�L�

ENDIF

ENDIF

ENDIF

ENDDO

ENDDO

ENDDO

END

������ Requirements for HPF��

Since the code showed is going to be accepted as input to our sparse compiler implemented within
the Vienna Fortran Compilation System� we proof that the sparse extensions already mentioned
su�ce to express this algorithm by using a data�parallel language� either Vienna�Fortran or HPF�
Also� another examples of sparse codes has been successfully expressed in Vienna�Fortran by using
our new language elements�

� Sparse Matrix Vector Product�
� Sparse Matrices Multiplication�
� The Lanczos Algorithm to tridiagonalize a sparse matrix or compute its eigenvalues�
� The Conjugate Gradient method� a well�known iterative algorithm for solving linear systems�

��

Bibliography

��� G� Agrawal and J� Saltz� Interprocedural communication optimizations for distributed mem�
ory compilation� In Proc� Seventh Annual Workshop on Languages and Compilers for Parallel
Computing� Ithaca� New York� August �		��

��� Gagan Agrawal� Alan Sussman� and Joel Saltz� Compiler and runtime support for structured
and block structured applications� In Supercomputing ��� pages �������� November �		��
An extended version available as University of Maryland Technical Report CS�T R��
�� and
UMIACS�TR�	���	�

��� Gagan Agrawal� Alan Sussman� and Joel Saltz� An integrated runtime and compile�time
approach for parallelizing structured and block structured applications� IEEE Trans� on

Parallel and Distributed Systems� �		�� To appear� Also available as University of Maryland
Technical Report CS�TR����� and UMIACS�TR�	��	��

��� J� Anderson and M� Lam� Global optimizations for parallelism and locality on scalable parallel
machines� In Proc� SIGPLAN ��� Conf� on Program Language Design and Implementation�
Albuquerque� NM� June �		��

��� Applications Working Group Of The Scalable I�O Initiative� Preliminary survey of I�O
intensive applications� Technical Report CCSF���� Concurrent Supercomputing Consortium�
Caltech� Pasadena� CA 	����� January �		�� Scalable I�O Initiative Working Paper No� ��

��� R� Asenjo and E� L� Zapata� Sparse LU factorization on the CRAY T�D� Submitted to�
High�Performace Computing and Networking Europe�	�� May �		��

��� C� Ashcraft� S� Eisenstat� and J� W��H� Liu� A fan�in algorithm for distributed sparse nu�
merical factorization� SIAM J� Sci� Statist� Comput�� ����	���		� �		
�

��� C� C� Ashcraft� R� G� Grimes� J� G� Lewis� B� W� Peyton� and H� D� Simon� Progress
in sparse matrix methods for large linear systems on vector supercomputers� Internat� J�
Supercomputer Appl�� ���
��
� �	���

�	� D� H� Bailey� FFTs in external or hierarchical memory� The Journal of Supercomputing�
�������� �		
�

��
� H� E� Bal� J� G� Steiner� and A� S� Tanenbaum� Programming languages for distributed
computing systems� ACM Computing Surveys� ������������� �	�	�

���� S� Benkner� Vienna Fortran �� and its Compilation� PhD thesis� technical University of
Vienna� Vienna� Austria� September �		��

�	

���� R� Bordawekar� A� Choudhary� K� Kennedy� and C� Koelbel� Models and compilation strate�
gies for out�of�core data parallel prog rams� Technical Report Under Preperation� Northeast
Parallel Architectures Center� Syracuse University� and CRPC� �		��

���� R� Bordawekar� A� Choudhary� and R� Thakur� Data Access Reorganizations in Compiling
Out�of�core Data Parallel Programs on Distributed Memory Machines� Technical Report
SCCS����� NPAC� Syracuse University� April �		��

���� R� Bordawekar� J� del Rosario� and A� Choudhary� Design and Evaluation of Primitives for
Parallel I�O� In Proc� Supercomputing���� pages �������� November �		��

���� P� Brezany� M� Gerndt� P� Mehrotra� and H� Zima� Concurrent File Operations in a High
Performance Fortran� In Proc� Supercomputing ���� pages ��
����� November �		��

���� P� Brezany� M� Gerndt� V� Sipkova� and H� Zima� SUPERB support for irregular scienti�c
computations� In Proc� 	��� Scalable High Performance Computing Conf�� Williamsburg�
VA� April �		��

���� S� Chakrabarti and K� Yelick� Implementing an irregular application on a distributed memory
multiprocessor� In Proc� Fourth ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming� San Diego� CA� May �		��

���� K� M� Chandy� I� Foster� K� Kennedy� C� Koelbel� and C��W� Tseng� Integrated support for
task and data parallelism� Intl� J� Supercomputer Applications� �����
�	�� �		��

��	� B� Chapman� P� Mehrotra� and H� Zima� Vienna Fortran � a Fortran language extension
for distributed memory multiprocessors� In J� Saltz and P� Mehrotra� editors� Languages

Compilers
 and Run�Time Environments for Distributed Memory Machines� North�Holland�
Amsterdam� The Netherlands� �		��

��
� Barbara M� Chapman� Piyush Mehrotra� John Van Rosendale� and Hans P� Zima� A soft�
ware architecture of multidisciplinary applications� Integrating task and data parallelism� In
Proceedings of CONPAR���VAPP VI Third International Conference on Vector and Parallel

Processing
 LNCS ��� pages �������� Springer Verlag� September �		��

���� A� Choudhary� R� Bordawekar� M� Harry� R� Krishnaiyer� R� Ponnusamy� T� Singh� and
R� Thakur� PASSION� Parallel and Scalable Software for Input�Output� Technical Report
SCCS����� NPAC� Syracuse University� September �		��

���� P� Corbett� D� Feitelson� J� Prost� and S� Baylor� Parallel Access to Files in the Vesta File
System� In Proc� Supercomputing ���� pages �������� November �		��

���� R� Cypher� A� Ho� S� Konstantinidou� and P� Messina� Architectural requirements of parallel
scienti�c applications with explicit communication� In Proc� of Intl� Symposium on Computer

Architecture� pages ����� �		��

���� E� D� Dahl� Mapping and compiled communication on the connection machine system� In
Proc� th Distributed Memory Computing Conf�� Charleston� SC� April �		
�

���� Raja Das� Joel Saltz� and Reinhard von Hanxleden� Slicing analysis and indirect access to
distributed arrays� In Proc� �th Workshop on Languages and Compilers for Parallel Comput�
ing� pages �������� Springer�Verlag� August �		�� Also available as University of Maryland
Technical Report CS�TR��
�� and UMIACS�TR�	�����

�

���� Raja Das� Mustafa Uysal� Joel Saltz� and Yuan�Shin Hwang� Communication optimizations
for irregular scienti�c computations on distributed memory architectures� Journal of Parallel
and Distributed Computing� �����������	� September �		�� Also available as University of
Maryland Technical Report CS�TR����� and UMIACS�TR�	���
	�

���� J� del Rosario and A� Choudhary� High performance i�o for parallel computers� Problems
and prospects� IEEE Computer� March �		��

���� J� del Rosario� M� Harry� and A� Choudhary� The Design of VIP�FS� A Virtual Parallel
File System for High Performance Parallel and Distributed Computing� Technical Report
SCCS����� NPAC� Syracuse University� May �		��

��	� J� M� del Rosario and A� Choudhary� High�performance I�O for massively parallel computers
� problems and prospects� IEEE Computer� pages �	���� �		��

��
� I� S� Du� and J� K� Reid� Some design features of a sparse matrix code� ACM Trans� Math�
Software� �������� �	�	�

���� I� S� Du� A� M� Erisman and J� K� Reid� Direct Methods for Sparse Matrices� Oxford
University Press� Oxford� U�K�� �	���

���� K� Eswar� C��H� Huang� and P� Sadayappan� Memory�adaptive parallel sparse cholesky fac�
torization� In Proceedings of the 	��� Scalable High�Performance Computing Conference ����
pages �������� Knoxville� TN� �		��

���� K� Eswar� C��H� Huang� and P� Sadayappan� On mapping data and computation for paral�
lel sparse cholesky factorization� Technical Report OSU�CISRC���	��TR�
� Department of
Computer and Information Science� The Ohio State University� �		��

���� K� Eswar� P� Sadayappan� C��H� Huang� and V� Visvanathan� Supernodal sparse cholesky
factorization on distributed�memory multiprocessors� In Proceedings of the Twenty�second

International Conference on Parallel Processing� volume III� pages ������ St� Charles� IL�
�		��

���� K� Eswar� P� Sadayappan� and V� Visvanathan� Multifrontal factorization of sparse matrices
on shared�memory multiprocessors� In Proceedings of the Twentieth International Conference

on Parallel Processing� volume III� pages ��	����� St� Charles� IL� �		��

���� K� Eswar� P� Sadayappan� and V� Visvanathan� Parallel direct solution of sparse linear
systems� In F� (Ozg(uner and F� Er)cal� editors� Parallel Computing on Distributed Memory
Multiprocessors� Berlin and Heidelberg and New York� �		�� Springer Verlag�

���� Message Passing Interface Forum� MPI� A message�passing interface standard� Technical
Report Computer Science Dept� Technical Report CS�	����
� University of Tennessee� April
�		�� To appear in the International Journal of Supercomputer Applications� Volume ��
Number ���� �		��

���� I� Foster� B� Avalani� A� Choudhary� and M� Xu� A compilation system that integrates High
Performance Fortran and Fortran M� In Proc� 	��� Scalable High Performance Computing

Conf�� pages �	���

� �		��

��	� I� Foster and K� M� Chandy� Fortran M� A language for modular parallel programming�
Journal of Parallel and Distributed Computing� ����� �		��

��

��
� I� Foster� J� Tilson� A� Wagner� R� Shepard� R� Harrison� R� Kendall� and R� Little�eld� High
performance computational chemistry� I� Scalable Fock matrix construction algorithms�
Preprint� Mathematics and Computer Science Division� Argonne National Laboratory� Ar�
gonne� Ill�� �		��

���� G� Fox� S� Hiranandani� K� Kennedy� C� Koelbel� U� Kremer� C��W� Tseng� and M� Wu�
Fortran D language speci�cation� Technical Report TR	
����� Dept� of Computer Science�
Rice University� December �		
�

���� G� Fox� M� Johnson� G� Lyzenga� S� Otto� J� Salmon� and D� Walker� Solving Problems on
Concurrent Processors� volume �� Prentice�Hall� Englewood Cli�s� NJ� �	���

���� W� M� Gentleman and G� Sande� Fast Fourier transforms for fun and pro�t� In Proc� AFIPS�
volume �	� pages �������� �	���

���� A� George� M� Heath� J�W��H Liu� and E�G��Y� Ng� Sparce Cholesky factorization on an
local�memory multiprocessor� SIAM J� Sci� Statist� Comput�� 	�������
� �	���

���� A� George and J�W��H� Liu� Computer Solution of Large Sparce Positive De�nite Systems�
Prentice�Hall� Englewood Cli�s� NJ� �	���

���� H� M� Gerndt� Automatic Parallelization for Distributed�Memory Multiprocessing Systems�
PhD thesis� University of Bonn� December �	�	�

���� G� H� Golub and C� F� Van Loan� Matrix Computation� The Johns Hopkins University Press�
Baltimore� MD� � edition� �	�	�

���� A� Gupta and V� Kumar� A scalable parallel algorithm for sparse matrix factorization�
Technical Report TR 	���	� Department of Computer Science� University of Minnesota� �		��

��	� Manish Gupta� Edith Schonberg� and Harini Srinivasan� A uni�ed data��ow framework for
optimizing communication� In Proc� Seventh Annual Workshop on Languages and Compilers
for Parallel Computing� Ithaca� New York� August �		��

��
� R� v� Hanxleden� K� Kennedy� and J� Saltz� Value�based distributions in fortran d � a
preliminary report� Technical Report CRPC�TR	�����S� Center for Research on Parallel
Computation� Rice University� December �		�� submitted to Journal of Programming Lan�
guages � Special Issue on Compiling and Run�Time Issues for Distributed Address Space
Machines�

���� R� Harrison et al� High performance computational chemistry� II� A scalable SCF code�
Preprint� Mathematics and Computer Science Division� Argonne National Laboratory� Ar�
gonne� Ill�� �		��

���� M� T� Heath� E� Ng� and B� W� Peyton� Parallel algorithms for sparse linear systems� SIAM
Review� �����
���
� �		��

���� W� Hehre� L� Radom� P� Schleyer� and J� Pople� Ab Initio Molecular Orbital Theory� John
Wiley and Sons� �	���

���� High Performance Fortran Forum� High Performance Fortran journal of development� Tech�
nical Report CRPC�TR	��

� Center for Research on Parallel Computation� Rice University�
Houston� TX� May �		��

��

���� High Performance Fortran Forum� High Performance Fortran language speci�cation� version
��
� Technical Report CRPC�TR	����� Center for Research on Parallel Computation� Rice
University� May �		��

���� Holian� Mandell� Adams� Addessio� Baumgardner� and Mosso� Mesa� A ��d computer code
for armor�anti�armor applications� In Proceedings of the Supercomputing World Conference�
�		
�

���� Intel� Paragon XP�S System Description� Technical Report Intel Advanced Information�
Intel Corporation� �		��

���� S� D� Kaushik� C��H� Huang� J� R� Johnson� R� W� Johnson� and P� Sadayappan� E�cient
transposition algorithms for large matrices� In Proc� of Supercomputing ���� pages ��������
�		��

��	� C� Koelbel and P� Mehrotra� Programming data parallel algorithms on distributed memory
machines using Kali� In Proc� 	��	 ACM International Conf� on Supercomputing� Cologne�
Germany� June �		��

��
� C� Koelbel� P� Mehrotra� and J� Van Rosendale� Supporting shared data structures on dis�
tributed memory machines� In Proc� Second ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming� Seattle� WA� March �		
�

���� Kothe� Baumgardner� Cerutti� Daly� Holian� Kober� Mosso� Painter� Smith� and Torrey�
Pagosa� A massively parallel multi�material hydrodynamics model for three�dimensional high�
speed �ow and high�rate material deformation� In Adrian Tentner� editor� High Performance
Computing 	���� Grand Challenges in Computer Simulation� pages 	���� The Society for
Computer Simulation� �		��

���� D� J� Kuck and A� H� Sameh� A supercomputing performance evaluation plan� In Proceedings

of the International Conference on Supercomputing� Athens� Greece� June �	��� Springer
Verlag� Lecture Notes in Computer Science� '�	�� pp� �����

���� B� Lee and F� M� Richards� The interpretation of protein structures� Estimation of static
accessibility� Journal of Molecular Biology� �����	��

� �	���

���� A� Geist A� Beguelin J� Dongarra W� Jiang R� Manchek and V� Sunderam� PVM � User�s
Guide and Refernce Manual� Engineering Physic and Mathematics Division� Oak Ridge
National Laboratory� Oak Ridge� Tennessee ������ May �		��

���� H� M� Markowitz� The elimination form of the inverse and its application to linear program�
ming� Management Sci�� ��������	� �	���

���� G� McRae� W� Goodin� and J� Seinfeld� Development of a second�generation mathematical
model for urban air pollution � �� Model formulation� Atmospheric Environment� �������	�
�	�� �	���

���� G� McRae� A� Russell� and R� Harley� CIT Photochemical Airshed Model � Systems Manual�
Carnegie Mellon University� Pittsburgh� PA� and California Institute of Technology� Pasadena�
CA� February �		��

��

���� S� Booth J� Fisher N� MacDonald P� Maccallum E� Minty and A� Simpson� Parallel Program�
ming on the Cray T�D� Edinburgh Parallel Computing Centre� University of Edinburgh�
U�K�� September �		��

��	� Bongki Moon� Gopal Patnaik� Robert Bennett� David Fyfe� Alan Sussman� Craig Douglas�
Joel Saltz� and K� Kailasanath� Runtime support and dynamic load balancing strategies for
structured adaptive applications� In Proceedings of the Seventh SIAM Conference on Parallel

Processing for Scienti�c Computing� SIAM� February �		�� To appear�

��
� D� Noll� J� Pauly� C� Meyer� D� Nishimura� and A� Macovski� Deblurring for non �d�fourier
transform magnetic resonance imaging� Magnetic Resonance in Medicine� �����	����� �		��

���� M� Okutomi and T� Kanade� A multiple�baseline stereo� IEEE Transactions on Pattern

Analysis and Machine Intelligence� ������������� �		��

���� M� A� Olson and K� D� Kimsey� Calculation of elastic�plastic wave propagation on the con�
nection machine� Technical Report BRL�TR����
� Balistic Research Laboratory� June �		��

���� S� Plimpton� Gary Mastin� and Dennis Ghiglia� Synthetic aperture radar image processing
on parallel supercomputers� In Proc� of Supercomputing ��	� pages �������� Albuquerque�
NM� November �		��

���� Ravi Ponnusamy� Yuan�Shin Hwang� Joel Saltz� Alok Choudhary� and Geo�rey Fox� Support�
ing irregular distributions in FORTRAN 	
D�HPF compilers� Technical Report CS�TR�����
and UMIACS�TR�	����� Computer Science Department� University of Maryland� May �		��
To appear in IEEE Parallel and Distributed Technology�

���� Ravi Ponnusamy� Joel Saltz� Alok Choudhary� Yuan�Shin Hwang� and Geo�rey Fox� Runtime
support and compilation methods for user�speci�ed data distributions� Technical Report CS�
TR���	� and UMIACS�TR�	������ University of Maryland� November �		�� To appear in
IEEE Transactions on Parallel and Distributed Systems�

���� J� Ramanujam and P� Sadayappan� Iteration space tiling for distributed memory machines�
In J� Saltz and P� Mehrotra� editors� Languages
 Compilers
 and Run�Time Environments for
Distributed Memory Machines� North�Holland� Amsterdam� The Netherlands� �		��

���� D� F� G� Rault and M� S� Woronowicz� Spacecraft contamination investigation by direct
simulation Monte Carlo � contamination on UARS�HALOE� In Proceedings AIAA �	th
Aerospace Sciences Meeting and Exhibit
 Reno
 Nevada� January �		��

���� A� Reeves and C� Chase� The Paragon programming paradigm and distributed�memory mul�
ticomputers� In J� Saltz and P� Mehrotra� editors� Languages
 Compilers
 and Run�Time
Environments for Distributed Memory Machines� North�Holland� Amsterdam� The Nether�
lands� �		��

��	� Timothy J� Richmond� Solvent accessible surface area and excluded volue in proteins� Journal
of Molecular Biology� ��������	� �	���

��
� A� Rogers and K� Pingali� Process decomposition through locality of reference� In Proc�
SIGPLAN ��� Conf� on Program Language Design and Implementation� Portland� OR� June
�	�	�

��

���� E� Rothberg and A� Gupta� An e�cient block�oriented approach to parallel sparse cholesky
factorization� In Proc� of Supercomputing ���� Minneapolis� November �		��

���� P� Sadayappan and V� Visvanathan� Circuit simulation on shared�memory multiprocessors�
IEEE Transactions on Computers� C����������������� December �	���

���� J� Saltz� K� Crowley� R� Mirchandaney� and H� Berryman� Run�time scheduling and execu�
tion of loops on message passing machines� Journal of Parallel and Distributed Computing�
�����
������ April �		
�

���� R� Schreiber� A new implementation of sparse gaussian elimination� ACM Trans� Math�

Software� ���������� �	���

���� Shamik D� Sharma� Ravi Ponnusamy� Bongki Moon� Yuan�Shin Hwang� Raja Das� and Joel
Saltz� Run�time and compile�time support for adaptive irregular problems� In Proc� of

Supercomputing ���� November �		�� To appear�

���� G� Shaw� R� Gabel� D� Martinez� A� Rocco� S� Pohlig� A� Gerber� J� Noonan� and K� Teit�
elbaum� Multiprocessors for radar signal processing� Technical Report 	��� MIT Lincoln
Laboratory� November �		��

���� A� Shrake and J� A� Rupley� Environment and exposure to solvent of protein atoms� Journal
of Molecular Biology� �	��������� �	���

���� J� Subhlok� J� Stichnoth� D� O�Hallaron� and T� Gross� Exploiting task and data paral�
lelism on a multicomputer� In Proc� SIGPLAN ��� Conf� on Program Language Design and
Implementation� Albuquerque� NM� June �		��

��	� R� Thakur� R� Bordawekar� and A� Choudhary� Compiler and Runtime Support for Out�
of�Core HPF Programs� In Proc� �th ACM International Conf� on Supercomputing� pages
�����	�� July �		��

�	
� R� Thakur� R� Bordawekar� and A� Choudhary� Compilation of out�of�core data parallel
programs for distributed memory machines� Proc� Workshop on I�O in Parallel Computer
Systems at IPPS ���� April �		��

�	�� R� Thakur� R� Bordawekar� A� Choudhary� R� Ponnuswamy� and T� Singh� PASSION runtime
library for parallel I�O� In Proc� of Scalable Parallel Libraries Conference� �		�� to appear�

�	�� M� Ujaldon� E�L� Zapata� B� Chapman� and H� Zima� New data�parallel language features for
sparse matrix computations� Submitted to 	th International Parallel Processing Symposium�
April �		�� Santa Barbara� California�

�	�� R� Asenjo L� F� Romero M� Ujald&on and E� L� Zapata� Sparse block and cyclic data distribu�
tions for matrix computations� In High Performance Computing� Technology and Application�
Grandinetti et al� Eds�� Elsevier Science� to appear��

�	�� A� F� van der Stappen R� H� Bisseling and J� G� G� van de Vorst� Parallel sparse LU decom�
position on a mesh network of transputers� SIAM J� Matrix Anal� Appl�� �����������	� July
�		��

�	�� C� Van Loan� Computational Frameworks for the Fast Fourier Transform� SIAM� Philadel�
phia� PA� �		��

��

�	�� Z� Zlatev J� Wasniewski and K� Schaumburg� Y	�M�Solution of Large and Sparse Systems

of Linear Algebraic Equations� Number ��� in Lecture Notes in Computer Science� Springer�
Verlang� Berlin� �	���

�	�� R� Weaver and R� Schnabel� Automatic mapping and load balancing of pointer�based dynamic
data structures on distributed memory machines� In Proc� 	��� Scalable High Performance

Computing Conf�� Williamsburg� VA� April �		��

�	�� J� Webb� Implementation and performance of fast parallel multi�baseline stereo vision� In
Computer Architectures for Machine Perception� pages ������
� December �		��

�		� J� Webb� Latency and bandwidth consideration in parallel robotics image processing� In
Proc� of Supercomputing ���� pages ��
���	� November �		��

��

� M� S� Woronowicz and D� F� G� Rault� On predicting contamination levels of HALOE optics
aboard UARS using direct simulation Monte Carlo� In Proceedings AIAA ��th Thermophysics
Conference
 Orlando
 Florida� June �		��

��
�� ANSI Technical Committee X�H�� Parallel processing model for high level programming
models� Technical report� American National Standards Institute ANSI�� �		��

��
�� B� Yang� J� Webb� J� Stichnoth� D� O�Hallaron� and T� Gross� Do*Merge� Integrating parallel
loops and reductions� In Proc� Sixth Workshop on Languages and Compilers for Parallel
Computing� volume ��� of Lecture Notes in Computer Science� pages ��	����� Portland� OR�
August �		�� Springer Verlag�

��
�� H� Zima� H� Bast� and M� Gerndt� Superb� A tool for semi�automatic MIMD�SIMD paral�
lelization� Parallel Computing� ������� �	���

��
�� Z� Zlatev� Computational Methods for General Sparse Matrices
 Mathematics and Its Appli�
cations� ��� Kluwer Academin Publisher� Dordrecht� the Netherlands� �		��

��

