
Sparse LU Factorization on the Cray T3D

R. Asenjo
E.L. Zapata

May 1995
Technical Report No: UMA-DAC-95/08

Published in:
Int’l. Conf. on High-Performance Computing and Networking
Milan, Italy, May 3-5, 1995, pp. 690-696
(Springer-Verlag, LNCS 919)

University of Malaga
Department of Computer Architecture
C. Tecnologico • PO Box 4114 • E-29080 Malaga • Spain

SPARSE LU FACTORIZATION ON THE

CRAY T�D
�

R� Asenjo and E� L� Zapata

Computer Architecture Department� University of M�alaga
Plaza El Ejido S�N� ����� M�alaga� SPAIN�

E�mail	 fasenjo� ezapatag�atc�ctima�uma�es
Tel	
�� � ��� �� �� Fax	
�� � ��� �� ���

Abstract� The paper describes a parallel algorithm for the LU fac�
torization of sparse matrices on distributed memory machines by using
SPMD as programming model and PVM as message passing interface�
We address all the di
culties arising in sparse codes� as the �ll�in or the
dynamic movement of data inside the matrix� The cyclic distribution has
been used to evenly distribute the elements onto a mesh of processors�
whereas two local storage schemes are proposed	 A semi�ordered and
two�dimensional linked list� which ful�ls better the requirements of the
algorithm� and a compressed storage by rows� which behaves better in
the use of memory� The properties of the code are extensively analyzed
and execution times on the CRAY T�D are presented to illustrate the
overall e
ciency achieved by our methods�

� Introduction

The solution of linear systems Ax � b� where the coe�cient matrix A has a
sparse sort and huge dimensions� plays a basic role in many �elds of the science�
engineering and economy�

Throughout this paper� we assume a nonsingular sparse matrix A with di�
mensions n � n �in the whole matrix there will only be � nonzero elements� such
that �� n��� By exploiting the sparsity of A� it is possible to reduce signi�cantly
the execution time and the memory required to solve the linear system�

There are several methods for solving sparse linear systems �	
� ���
� One of
them is based on the LU factorization of A �

� The output of such a factorization
is a couple of matrices� L �lower triangular� and U �upper triangular�� with
dimensions n� n� as well as the permutation vectors� � y �� with dimension n�
such that�

A�i��j � �LU �ij �i� j� � � i� j � n� ���

� This work was supported by the Ministry of Education and Science �CICYT� of Spain
under project TIC��������C��� by the Human Capital and Mobility programme of
the European Union under proyect ERB����P�������� and by the Training and
Research on Advanced Computing Systems �TRACS� at the Edinburgh Parallel
Computing Centre �EPCC�

The permutation vectors� � y �� are needed due to the permutation process
taking place during the factorization in rows and columns of A� with the aim of
preserving the sparsity rate and ensuring the numerical stability�

Sequential algorithms already developed for the sparse LU factorization� like
MA�� ��
 or Y��M ���
� perform several iterations� each involving a pivot search
in the reduced matrix� followed by a row and column swapping� and an up�
date of range one in the reduced matrix �de�ned as a submatrix containing
�n � k�� �n� k� elements Aij� such that k � i� j � n� in the k � th iteration��
This pivot must be chosen in such a way that the sparsity rate be preserved and
the numerical stability guaranteed�

The more widely heuristic strategy used for �nding pivots to preserve the
sparsity rate is known as Markowitz�s strategy ��
� When choosing a pivot� Aij �
it may create Mij � �Ri � ���Cj � �� new nonzero elements in the worst case�
where Ri �Cj� denotes the number of nonzero elements in the i� th row �j � th
column�� The upper bound Mij is known as Markowitz count �	� Chap� �
� The
pivot will be chosen such that minimizes the Markowitz count�

In addition� the numerical stability must be guaranteed� In order to accom�
plish it� we must avoid the selection of pivots having a low absolute value� what
leads us to accept candidate pivots� Aij� ful�lling the condition�

jAijj � u �max
l
jAlj j� ���

where u� � � u � � is a threshold parameter �	� Chap� �
�
This paper is organized as follows� Section � describes the data distribution�

For a detailed explanation of the parallell algorithm and its implementation see
��
� Section � presents the execution times and workload balance on the CRAY
T�D ��
 for di�erent sizes of the sparse matrix selected from the Harwell�Boeing
sparse matrix collection�

� Parallel Sparse LU Algorithm

The parallel algorithm executes a number of iterations� each involving three
di�erent phases� Pivots search� rows and columns permutation� and reduced
matrix and R and C vectors update� This factorization was broached by Stappen
et al� on a network of transputers ���
�

The inherent parallelism of the sparse LU algorithm involves two issues�
First of all� in the dense case� we can parallelize the loops traversing all the
updating of range one in the reduced matrix� This parallelism is inherited by
the sparse algorithm� Secondly� the sparse algorithmallows us to perform parallel
computations that must be sequentialized in the dense case� Thus� in the sparse
algorithm� it is possible to merge several updates of range one in a single update
process of multiple range �m� by modifying the Markowitz strategy in such a
way that we search for a pivot set containing m compatible pivots �referred
to as PivotSet�� Two pivots� Aij and Akl are compatible and independent if
Ail � Akj � ���

��� Data Distribution

Matrix A is distributed onto a P �Q mesh of processors� We will identify each
processor by means of its cartesian coordinates �r�� r��� with � � r� � P and
� � r� � Q� Nonzero elements of A are mapped over processors by using a
scatter distribution or cyclic storage

Aij ��� PE�imodP� jmodQ� �i� j� � � i� j � n� ���

This distribution optimizes the workload balance when the probability of a
nonzero element is regardless of its coordinates� Even though such a condition is
not ful�lled� when we have clusters grouping nonzero elements �for instance� in
the lower right corner of the matrix�� those will be spread on several processors�
achieving a good workload balance as well�

Permutation vectors � and � are partially replicated� We will store �i on
processors with coordinates �i mod P � 	�� and �j on processors with coordinates
�	� j mod Q�� Vectors R and C are distributed in the same way that � and ��
respectively�

We will name �A to the local matrix of �m � �n� where �m � dn�P e� and
�n � dn�Qe� The hat notation will be used to distinguish local variables and
indices from global ones� Hence� on processor �s� t�� the relationship between A
and �A will be given by the following equation�

�A���� � A��P�s���Q�t ���� �	� � � ��P � s� �	Q� t � n� �	�

The local data storage follows two strategies� Firstly� it has been used a semi�
ordered� two�dimensional doubly linked�list� Such a dynamic data structure� links
in a list all the nonzero elements belonging to the same row in a sorted way� and
the ones belonging to the same column in a non�sorted way� The set of �m ��n�
pointers pointing to the �rst elements of local rows �columns� are sorted in an
array rows �cols�� Each item stores� not only the value and the local indices� but
also pointers accessing to the previous and next element in its row and column�
The data structure described above enables data accesses quickly either by rows
or by columns� and makes easier the delete operation� On the other hand� each
item occupies a signi�cant amount of memory�

We can also choose another structure to reduce the wastage of memory with
respect to the previous one� We will name it Block Row Scatter �BRS� ���
� Let
us assume the matrix A to be partitioned into a set of submatrices B�l� k� with
dimensions P �Q� such that Aij �kl Bst where i � k �P � s� j � l �Q� t �� �
i� j � n�� Pairs �i� j�� �s� t� and �k� l� represent global� local and block indices�
respectively� In order to perform the partition of A giving submatrices B�k� l��
it may be necessary to add new rows or columns containing null elements to it�
The distribution of the elements of A is performed by mapping each block of
size P �Q onto the mesh of processors� and the data storage format consists of
three vectors� D� C y R� The D vector stores the nonzero values of the matrix�
as they are traversed in a row�wise fashion� The C vector contains the block
column indices of the elements in the D vector� Finally� the R vector stores the

indices in the D vector corresponding to the �rst non�zero element on each row�
By convention� we de�ne one additional element in R with a value equal to the
number of elements in D plus one� The memory spent is drastically reduced�
although the access to the data by columns may be slowed down�

In Figure �� we show an example of a sparse matrix with n � � and � � ��
and the distribution process� using BRS �on a �� � mesh��

�
BBBBB�

��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ���

��� 	�� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� 	�� ��� ���

�
CCCCCA

� D

���

���

���

�

� �C

�

�

�

�

� �R

�

�

�

�

�

� � D

���

���

���

�

� �C

�

	

�

�

� �R

�

�

	

�

�

�

� D

���

���

���

���

� �C

	

�

�

�

� �R

�

�

�

�

�

� � D

	��

���

	��

�

� �C

�

�

�

�

� �R

�

�

�

	

�

�

Fig� �� Doubly linked list and BRS storage �P � Q � ���

� Experimental Results on the CRAY T�D

The algorithm has been implemented by using the C language and the PVM
message�passing interface ��
 as provided for the CRAY T�D supercomputer�
The portability of the C language and the PVM interface let the target code
be compiled with minor modi�cations over other platforms� We have performed
all the experiments on the CRAY T�D� using a maximum of �	 DEC�Alpha
processors ��
� MHz� connected by a tridimensional torus topology�

On this machine� the communications under PVM have the following fea�
tures� bandwidth reaches 	���� Mbps and latency
����
s� both using commu�
nication functions as pvm send and pvm recv � however� by using pvm fastsend

and pvm fastrecv �non�standard PVM functions�� latencies are about �
���
s
when the message length is reduced ��
� bytes by default��

Typical optimizations to minimize the communication latency time have been
implemented by packing all the messages as many as possible� Further� messages
are broadcasted from the center to the edges and vice versa� what decreases
the number of messages and duplicates the speed of the broadcast and reduce
operations�

As an example� we accumulate all the incompatible pivots in the processor
�P��� Q���� where we create PivotSet and� subsequently� we broadcast it with
a complexity of O��P � Q����� Note that Stappen et al� create the PivotSet
by considering a pipeline in the �rst row of the mesh� in which all the pivots
are passing one by one through the mesh� from processor ��� t�� � � t � Q to
processor ��� Q� ��� creating in this last processor the PivotSet� This alterna�
tive increases the total number of messages and the overhead associated to the
latencies�

��� Harwell�Boeing Sparse Matrix Collection

With the aim of testing the performance achieved by our algorithm�we have cho�
sen a set of �ve sparse real matrices and non�symmetric � with CCS �Compressed
Column Storage� format from the Harwell�Boeing sparse matrix collection ��
�
These matrices come from several realistic applications and possess size enough
to make them worth to be implemented on a multiprocessor machine like the
CRAY T�D� In table � we show the features for these matrices� as the dimension�
n� and the number of nonzero elements or entries� �� Moreover� we will note
��� the number of entries once the factorization is over �number of entries in
the LnU matrix�� It is also interesting to show the number of entries by row�
initially ���n�� and �nally ����n��

Matrix Origin n � �� ��n ���n

STEAM� Oil reservoir simulation ��� ����� ����� ����� �����
JPWH ��� Electronic circuit simulation ��� ���� ����� ���� �����
SHERMAN� Oil reservoir simulation ���� ���� ����� ���� �����
SHERMAN� Oil reservoir simulation ���� ����� ������ ����� ������
LNS ���� Compressible �uid �ow ���� ����� ������ ���� ������

Table �� Test set of sparse matrices

��� Execution Times and Speed�up

Throughout this section we compare the execution times of the parallel program�
executed on a mesh of P � Q processors� and the sequential version� executed
on a single Alpha processor� The parallel program is an implementation of the
algorithm described in section �� The data structure used is a semi�ordered
two�dimensional doubly linked�list� We will make the features of the algorithm
regardless of the number of processors so that the execution times over di�erent
meshes are comparable� Thus� we will establish the input parameters beforehand�
The number of columns in which each processor will search for candidate pivots�
ncol� will be determined to ���Q �Q � �
 ncol � ��� Q � �
 ncol � �� � � �
Q � ��
 ncol � ��� All the candidates must ful�l equation � with u � ��� as
Du�� Erisman and Reid �	� Chap� �
 suggest� Candidates with Mij � a �Mi��j�

will be rejected� We will set a � 	 as Davis and Yew ��
 and Stappen et al� ���

did in their experiments�

The sequential program is an optimized version of the parallel program�made
by simplifying the parallel program� where we remove all the parallel overhead
and exploit P � � and Q � � as much as possible�

Table � presents the execution times for the
 matrices and di�erent sizes of
the mesh� We will name Tp to the parallel time� and Tseq to the sequential one�

As we can see� times are monotonically decreasing as the number of proces�
sors is increased� With SHERMAN� there is one exception going from 	 � 	 to

� In case of symmetric matrices� the Cholesky factorization algorithm is more e
cient

� � � processors� The reason is that SHERMAN� is the most sparse matrix in
table �� not only previously to the factorization� but also after it ���n and ���n
minimums�� This produces a low relation between the number of local opera�
tions and communications� Furthermore� the messages sent have few data� so�
the latency time predominates over the transmission time�

In table � it is also shown the speed�up� Sp � Tseq�Tp where p � P � Q
processors� and the e�ciency� Ep � Sp�p� of the parallel algorithm by using
these matrices and di�erent sizes of the mesh� As we see� the algorithm scales
rather good� The low e�ciencies achieved on �	 processors can be explained
if we take into account the small size of the matrices and the low number of
�oating point operations� In addition� there is a high ratio between the power
of the Alpha processor and the bandwidth of the interconnection network using
PVM� The best e�ciencies are achieved with the SHERMAN� matrix� This is

Time �sec�� Speed�up E
ciency���

Matrix seq � � � �� � �� � �� � �� � �� � �� � �� � � � �

STEAM� ���� ���� ���� ���� ���� ���� ���� ����� ����� �����
JPWH ��� ����� ���� ���� ���� ���� ���� ���� ����� ����� �����
SHERMAN� ���� ���� ���� ���� ���� ���� ���� ����� ����� ����
SHERMAN� ����� ����� ���� ���� ���� ���� ����� ����� ����� �����
LNS ���� ������ ����� ����� ����� ���� ���� ����� ����� ����� �����

Table �� Time� speed�up and e
ciency on di�erent sizes of the mesh

the most dense matrix in table �� not only before the factorization �density of
������� but also after it �density of �
������ It is also seen that the e�ciency
depends more on the ratio between the number of entries and the number of
rows ���n� than on the number of entries itself�

� Future Work

In subsequent experiments we will be able to measure execution times for matri�
ces with higher number of rows and entries per row� whereby the program must
reach even better e�ciencies�

Moreover� we will prove the BRS strategy to provide good e�ciencies in ad�
dition to less memory requirements� As we discussed in subsection ���� following
this storage strategy� the access to the data by columns it is slower than in the
linked list structure� Because of this� we implement the pivot search by rows and
permute the two inner loops in order to divide rows by the diagonal�

The back�substitution and forward�substitution phases will also be imple�
mented soon� since they are required by a wide number of real applications�

Acknowledgments

We gratefully thank to K�I�M� Mc Kinnon from the Mathematics and Statistics
Dept� of the University of Edinburgh the interest showed in this work� as well
as the sta�s of TRACS support and the Edinburgh Parallel Computing Centre
for giving us access to the CRAY T�D machine and initiate us on its handling�

References

�� R� Asenjo and E�L� Zapata� Sparse LU factorization on the Cray T�D� Technical
report� Computer Architecture Dept� Univ� of M�alaga� September ����� Anony�
mous ftp	 ftp�atc�ctima�uma�es �SpLUCray�ps��

�� T� A� Davis and P� C� Yew� A nondeterministic parallel algorithm for general
unsymmetric sparse LU factorization� SIAM J� Matrix Anal� Appl�� ��	��������
�����

�� I� S� Du� and J� K� Reid� Some design features of a sparse matrix code� ACM

Trans� Math� Software� �	������ �����
�� I� S� Du� A� M� Erisman and J� K� Reid� Direct Methods for Sparse Matrices�

Oxford University Press� Oxford� U�K�� �����
�� G� H� Golub and C� F� Van Loan� Matrix Computation� The Johns Hopkins Uni�

versity Press� Baltimore� MD� � edition� �����
�� I� S� Du� R� G� Grimes and J� G� Lewis� Sparse matrix test problems� ACM

Trans� Math� Software� ��	����� �����
�� A� Geist A� Beguelin J� Dongarra W� Jiang R� Manchek and V� Sunderam� PVM �

User�s Guide and Refernce Manual� Engineering Physic and Mathematics Division�
Oak Ridge National Laboratory� Oak Ridge� Tennessee ������ May �����

�� H� M� Markowitz� The elimination form of the inverse and its application to linear
programming� Management Sci�� �	�������� �����

�� S� Booth J� Fisher N� MacDonald P� Maccallum E� Minty and A� Simpson� Parallel
Programming on the Cray T�D� Edinburgh Parallel Computing Centre� University
of Edinburgh� U�K�� September �����

��� R� Asenjo L� F� Romero M� Ujald�on and E� L� Zapata� Sparse block and cyclic
data distributions for matrix computations� In High Performance Computing�

Technology and Application� Grandinetti et al� �Eds�� Elsevier Science� �to appear��
��� A� F� van der Stappen R� H� Bisseling and J� G� G� van de Vorst� Parallel sparse

LU decomposition on a mesh network of transputers� SIAM J� Matrix Anal� Appl��
�����	�������� July �����

��� Z� Zlatev J� Wasniewski and K� Schaumburg� Y��M�Solution of Large and
Sparse Systems of Linear Algebraic Equations� In Lecture Notes in Computer

Science� number ���� pages ������ Berlin� ����� Springer�Verlang�
��� Z� Zlatev� Computational Methods for General Sparse Matrices� Mathematics and

Its Applications� ��� Kluwer Academin Publisher� Dordrecht� the Netherlands�
�����

This article was processed using the LaTEX macro package with LLNCS style

