Sparse LU Factorization on the Cray T3D

R. Asenjo
E.L. Zapata
May 1995
Technical Report No: UMA-DAC-95/08
Published in:

Int’l. Conf. on High-Performance Computing and Networking
Milan, Italy, May 3-5, 1995, pp. 690-696
(Springer-Verlag, LNCS 919)

University of Malaga

Department of Computer Architecture
C. Tecnologico = PO Box 4114 « E-29080 Malaga = Spain

SPARSE LU FACTORIZATION ON THE
CRAY T3D~

R. Asenjo and E. L. Zapata

Computer Architecture Department. University of Malaga
Plaza El Ejido S/N. 29013 Mdlaga. SPAIN.
E-mail: {asenjo, ezapata}@atc.ctima.uma.es
Tel: +34 5 213 14 04 Fax: +34 5 213 14 13.

Abstract. The paper describes a parallel algorithm for the LU fac-
torization of sparse matrices on distributed memory machines by using
SPMD as programming model and PVM as message passing interface.
We address all the difficulties arising in sparse codes, as the fill-in or the
dynamic movement of data inside the matrix. The cyclic distribution has
been used to evenly distribute the elements onto a mesh of processors,
whereas two local storage schemes are proposed: A semi-ordered and
two-dimensional linked list, which fulfils better the requirements of the
algorithm, and a compressed storage by rows, which behaves better in
the use of memory. The properties of the code are extensively analyzed
and execution times on the CRAY T3D are presented to illustrate the
overall efficiency achieved by our methods.

1 Introduction

The solution of linear systems Az = b, where the coefficient matrix A has a
sparse sort and huge dimensions, plays a basic role in many fields of the science,
engineering and economy.

Throughout this paper, we assume a nonsingular sparse matrix A with di-
mensions n X n (in the whole matrix there will only be o nonzero elements, such
that o < n?). By exploiting the sparsity of A it is possible to reduce significantly
the execution time and the memory required to solve the linear system.

There are several methods for solving sparse linear systems [4], [13]. One of
them is based on the LU factorization of A [5]. The output of such a factorization
is a couple of matrices, L (lower triangular) and U (upper triangular), with
dimensions n X n, as well as the permutation vectors, # y p, with dimension n,
such that:

An,,pj = (LU)Z']' Vi,5, 0<14,7 <n. (1)

* This work was supported by the Ministry of Education and Science (CICYT) of Spain
under project T1C92-0942-C03, by the Human Capital and Mobility programme of
the European Union under proyect ERB4050P1921660, and by the Training and
Research on Advanced Computing Systems (TRACS) at the Edinburgh Parallel
Computing Centre (EPCC)

The permutation vectors, m y p, are needed due to the permutation process
taking place during the factorization in rows and columns of A, with the aim of
preserving the sparsity rate and ensuring the numerical stability.

Sequential algorithms already developed for the sparse LU factorization, like
MA28 [3] or Y12M [12], perform several iterations, each involving a pivot search
in the reduced matrix, followed by a row and column swapping, and an up-
date of range one in the reduced matriz (defined as a submatrix containing
(n —k) x (n— k) elements A;;, such that k <14 j < n, in the k — th iteration).
This pivot must be chosen in such a way that the sparsity rate be preserved and
the numerical stability guaranteed.

The more widely heuristic strategy used for finding pivots to preserve the
sparsity rate is known as Markowitz’s strategy [8]. When choosing a pivot, 4;;,
it may create M;; = (R; — 1)(C; — 1) new nonzero elements in the worst case,
where R; (C}) denotes the number of nonzero elements in the ¢ — th row (j —th
column). The upper bound M;; is known as Markowitz count [4, Chap. 7]. The
pivot will be chosen such that minimizes the Markowitz count.

In addition, the numerical stability must be guaranteed. In order to accom-
plish it, we must avoid the selection of pivots having a low absolute value, what
leads us to accept candidate pivots, A;;, fulfilling the condition:

|Aij| > - mlaX|Alj|a (2)

where u, 0 < u <1 is a threshold parameter [4, Chap. 7].

This paper is organized as follows. Section 2 describes the data distribution.
For a detailed explanation of the parallell algorithm and its implementation see
[1]. Section 3 presents the execution times and workload balance on the CRAY
T3D [9] for different sizes of the sparse matrix selected from the Harwell-Boeing
sparse matrix collection.

2 Parallel Sparse LU Algorithm

The parallel algorithm executes a number of iterations, each involving three
different phases: Pivots search, rows and columns permutation, and reduced
matrix and R and C' vectors update. This factorization was broached by Stappen
et al. on a network of transputers [11].

The inherent parallelism of the sparse LU algorithm involves two issues.
First of all, in the dense case, we can parallelize the loops traversing all the
updating of range one in the reduced matrix. This parallelism is inherited by
the sparse algorithm. Secondly, the sparse algorithm allows us to perform parallel
computations that must be sequentialized in the dense case. Thus, in the sparse
algorithm, 1t is possible to merge several updates of range one in a single update
process of multiple range (m) by modifying the Markowitz strategy in such a
way that we search for a pivot set containing m compatible pivots (referred
to as PivotSet). Two pivots, A;; and Ay are compatible and independent if
Ay = Ak]' =0..

2.1 Data Distribution

Matrix A is distributed onto a P x ¢ mesh of processors. We will identify each
processor by means of its cartesian coordinates (rg,r1), with 0 < rp < P and
0 < r1 < @. Nonzero elements of A are mapped over processors by using a
scatter distribution or cyclic storage

A;j — PE(imodP, jmodQ)) Vi,j, 0<4j<n. (3)

This distribution optimizes the workload balance when the probability of a
nonzero element is regardless of its coordinates. Even though such a condition is
not fulfilled, when we have clusters grouping nonzero elements (for instance, in
the lower right corner of the matrix), those will be spread on several processors,
achieving a good workload balance as well.

Permutation vectors 7 and p are partially replicated: We will store w; on
processors with coordinates (7 mod P,), and p; on processors with coordinates
(*, j mod Q). Vectors R and C' are distributed in the same way that & and p,
respectively.

We will name A to the local matrix of m x n, where m = [n/P], and
n = [n/Q]. The hat notation will be used to distinguish local variables and
indices from global ones. Hence, on processor (s,t), the relationship between A
and A will be given by the following equation:

Agi = Agp+sij+t Vi,j, 0<iP+ S,jQ +1 < n. (4)

The local data storage follows two strategies. Firstly, it has been used a semi-
ordered, two-dimensional doubly linked-list. Such a dynamic data structure, links
in a list all the nonzero elements belonging to the same row in a sorted way, and
the ones belonging to the same column in a non-sorted way. The set of i ()
pointers pointing to the first elements of local rows (columns) are sorted in an
array rows (cols). Each item stores, not only the value and the local indices, but
also pointers accessing to the previous and next element in its row and column.
The data structure described above enables data accesses quickly either by rows
or by columns, and makes easier the delete operation. On the other hand, each
item occupies a significant amount of memory.

We can also choose another structure to reduce the wastage of memory with
respect to the previous one. We will name it Block Row Scatter (BRS) [10]. Let
us assume the matrix 4 to be partitioned into a set of submatrices B({, k) with
dimensions P x @), such that A;; =* B wherei=k-P+s, j=1-Q+t (0<
i,j < mn). Pairs (¢,7), (s,t) and (k,!) represent global, local and block indices,
respectively. In order to perform the partition of A giving submatrices B(k,!),
it may be necessary to add new rows or columns containing null elements to it.
The distribution of the elements of A is performed by mapping each block of
size P x () onto the mesh of processors, and the data storage format consists of
three vectors, D, C'y R. The D vector stores the nonzero values of the matrix,
as they are traversed in a row-wise fashion. The C' vector contains the block
column indices of the elements in the D vector. Finally, the R vector stores the

indices in the D vector corresponding to the first non-zero element on each row.
By convention, we define one additional element in R with a value equal to the
number of elements in D plus one. The memory spent is drastically reduced,
although the access to the data by columns may be slowed down.

In Figure 1, we show an example of a sparse matrix with n = 8 and o« = 13
and the distribution process, using BRS (on a 2 x 2 mesh).

D] R D] K
1.8 1 :1,’ 5.4 4 i
1.8 0.0 0.0 0.0 0.0 0.0 4.3 0.0 4.3 4 3 7.6 2 2
0.0 0.0 3.0 0.0 0.0 0.0 4.9 0.0 9.6 3 3 1.0 4 3
- - 4 - - 4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.4
0.0 0.0 0.0 0.0 6.1 0.0 0.0 0.0
0.0 0.0 0.0 7.6 0.0 0.0 0.0 0.0
0.0 2.3 0.0 0.0 0.0 0.0 0.0 0.0
D] K D] K
0.0 0.0 0.0 0.0 9.6 0.0 0.0 1.0 3.0 2 ; 2.3 1 i
0.0 1.4 0.0 0.0 0.0 2.1 1.3 0.0 s 2 3 14 H !
6.1 3 4 2.1 3 5
1.3 4 5 - - 3

Fig. 1. Doubly linked list and BRS storage (P = Q = 2).

3 Experimental Results on the CRAY T3D

The algorithm has been implemented by using the C language and the PVM
message-passing interface [7] as provided for the CRAY T3D supercomputer.
The portability of the C language and the PVM interface let the target code
be compiled with minor modifications over other platforms. We have performed
all the experiments on the CRAY T3D, using a maximum of 64 DEC-Alpha
processors (150 MHz) connected by a tridimensional torus topology.

On this machine, the communications under PVM have the following fea-
tures: bandwidth reaches 40-60 Mbps and latency 50-70 s, both using commu-
nication functions as pvm_send and pvm_recv; however, by using pvm_fastsend
and pvm_fastrecv (non-standard PVM functions), latencies are about 15-20pus
when the message length is reduced (256 bytes by default).

Typical optimizations to minimize the communication latency time have been
implemented by packing all the messages as many as possible. Further, messages
are broadcasted from the center to the edges and vice versa, what decreases
the number of messages and duplicates the speed of the broadcast and reduce
operations.

As an example, we accumulate all the incompatible pivots in the processor
(P/2,Q/2), where we create PivotSet and, subsequently, we broadcast it with
a complexity of O((P + Q)/2). Note that Stappen et al. create the PivotSet
by considering a pipeline in the first row of the mesh, in which all the pivots
are passing one by one through the mesh, from processor (0,?); 0 <t < @ to
processor (0,@Q — 1), creating in this last processor the PivotSet. This alterna-
tive increases the total number of messages and the overhead associated to the
latencies.

3.1 Harwell-Boeing Sparse Matrix Collection

With the aim of testing the performance achieved by our algorithm, we have cho-
sen a set of five sparse real matrices and non-symmetric ? with CCS (Compressed
Column Storage) format from the Harwell-Boeing sparse matrix collection [6].
These matrices come from several realistic applications and possess size enough
to make them worth to be implemented on a multiprocessor machine like the
CRAY T3D. In table 1 we show the features for these matrices, as the dimension,
n, and the number of nonzero elements or entries, o. Moreover, we will note
o', the number of entries once the factorization is over (number of entries in
the L\U matrix). It is also interesting to show the number of entries by row,
initially («/n), and finally (a'/n).

|Matrix Origin n o o afn a'/n|

STEAM?2 Oil reservoir simulation 600 13760 52099 22.93 86.83
JPWH 991 Electronic circuit simulation 991 6027 63789 6.08 64.37
SHERMANT1 Oil reservoir simulation 1000 3750 22680 3.75 22.68
SHERMAN?2 Oil reservoir simulation 1080 23094 177417 21.38 164.28
LNS 3937 Compressible fluid flow 3937 25407 437099 6.45 111.02

Table 1. Test set of sparse matrices

3.2 Execution Times and Speed-up

Throughout this section we compare the execution times of the parallel program,
executed on a mesh of P x () processors, and the sequential version, executed
on a single Alpha processor. The parallel program is an implementation of the
algorithm described in section 2. The data structure used is a semi-ordered
two-dimensional doubly linked-list. We will make the features of the algorithm
regardless of the number of processors so that the execution times over different
meshes are comparable. Thus, we will establish the input parameters beforehand.
The number of columns in which each processor will search for candidate pivots,
neol, will be determined to 16/Q (@ =1 = neol = 16, Q = 2 = ncol = 8, ...
Q) = 16 = ncol = 1). All the candidates must fulfil equation 2 with « = 0.1 as
Duff, Erisman and Reid [4, Chap. 7] suggest. Candidates with M;; > a - M;, j,
will be rejected. We will set ¢ = 4 as Davis and Yew [2] and Stappen et al. [11]
did in their experiments.

The sequential program is an optimized version of the parallel program, made
by simplifying the parallel program, where we remove all the parallel overhead
and exploit P = 1 and @ = 1 as much as possible.

Table 2 presents the execution times for the 5 matrices and different sizes of
the mesh. We will name 7, to the parallel time, and 7., to the sequential one.

As we can see, times are monotonically decreasing as the number of proces-
sors is increased. With SHERMANT1 there is one exception going from 4 x 4 to

2 In case of symmetric matrices, the Cholesky factorization algorithm is more efficient

8 x 8 processors. The reason is that SHERMANT1 is the most sparse matrix in
table 1, not only previously to the factorization, but also after it («/n and o' /n
minimums). This produces a low relation between the number of local opera-
tions and communications. Furthermore, the messages sent have few data; so,
the latency time predominates over the transmission time.

In table 2 it is also shown the speed-up, S, = Tseq/Tp Wwhere p = P x Q)
processors, and the efficiency, E, = S,/p, of the parallel algorithm by using
these matrices and different sizes of the mesh. As we see, the algorithm scales
rather good. The low efficiencies achieved on 64 processors can be explained
if we take into account the small size of the matrices and the low number of
floating point operations. In addition, there is a high ratio between the power
of the Alpha processor and the bandwidth of the interconnection network using
PVM. The best efficiencies are achieved with the SHERMAN2 matrix. This is

Time (sec.) Speed-up Efficiency (%)
Matrix seq 2x2 4x4 8x8|2x2 4x4 8x8|2x2 4x4 8x8
STEAM2 9.89 3.57 1.90 1.47| 2.77 5.19 6.71|69.28 32.45 10.49

JPWH 991 16.22 6.74 3.16 2.14| 2.40 5.12 7.54|60.16 32.03 11.79
SHERMAN1 3.02 193 135 1.39] 1.56 2.23 2.17(39.08 13.95 3.40
SHERMAN2| 81.08 22.81 8.12 4.67| 3.55 9.98 17.33|88.87 62.38 27.09
LNS 3937 204.55 81.89 28.58 18.07| 2.49 7.15 11.31|62.44 44.73 17.68

Table 2. Time, speed-up and efficiency on different sizes of the mesh

the most dense matrix in table 1, not only before the factorization (density of
1.97%), but also after it (density of 15.21%). It is also seen that the efficiency
depends more on the ratio between the number of entries and the number of
rows («/n) than on the number of entries itself.

4 Future Work

In subsequent experiments we will be able to measure execution times for matri-
ces with higher number of rows and entries per row, whereby the program must
reach even better efficiencies.

Moreover, we will prove the BRS strategy to provide good efficiencies in ad-
dition to less memory requirements. As we discussed in subsection 2.1, following
this storage strategy, the access to the data by columns it is slower than in the
linked list structure. Because of this, we implement the pivot search by rows and
permute the two inner loops in order to divide rows by the diagonal.

The back-substitution and forward-substitution phases will also be imple-
mented soon, since they are required by a wide number of real applications.

Acknowledgments

We gratefully thank to K.I.M. Mc Kinnon from the Mathematics and Statistics
Dept. of the University of Edinburgh the interest showed in this work, as well
as the staffs of TRACS support and the Edinburgh Parallel Computing Centre
for giving us access to the CRAY T3D machine and initiate us on its handling.

References

1.

10.

11.

12.

13.

R. Asenjo and E.L. Zapata. Sparse LU factorization on the Cray T3D. Technical
report, Computer Architecture Dept. Univ. of Mdlaga, September 1994. Anony-
mous ftp: ftp.atc.ctima.uma.es (SpLUCray.ps).

T. A. Davis and P. C. Yew. A nondeterministic parallel algorithm for general
unsymmetric sparse LU factorization. SIAM J. Matriz Anal. Appl., 11:383-402,
1990.

. I.S. Duff and J. K. Reid. Some design features of a sparse matrix code. ACM

Trans. Math. Software, 5:18-35, 1979.
1. S. Duff A. M. Erisman and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, Oxford, U.K., 1986.

. G. H. Golub and C. F. Van Loan. Matrix Computation. The Johns Hopkins Uni-

versity Press, Baltimore, MD, 2 edition, 1989.

I. S. Duff R. G. Grimes and J. G. Lewis. Sparse matrix test problems. ACM
Trans. Math. Software, 15:1-14, 1989.

A. Geist A. Beguelin J. Dongarra W. Jiang R. Manchek and V. Sunderam. PVM 3
User’s Guide and Refernce Manual. Engineering Physic and Mathematics Division,
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, May 1993.

H. M. Markowitz. The elimination form of the inverse and its application to linear
programming. Management Sci., 3:255-269, 1957.

. S. Booth J. Fisher N. MacDonald P. Maccallum E. Minty and A. Simpson. Parallel

Programming on the Cray T3D. Edinburgh Parallel Computing Centre, University
of Edinburgh, U.K., September 1994.

R. Asenjo L. F. Romero M. Ujaldén and E. L.. Zapata. Sparse block and cyclic
data distributions for matrix computations. In High Performance Computing:
Technology and Application. Grandinetti et al. (Eds.) Elsevier Science, (to appear).
A. F. van der Stappen R. H. Bisseling and J. G. G. van de Vorst. Parallel sparse
LU decomposition on a mesh network of transputers. SIAM J. Matrix Anal. Appl.,
14(3):853-879, July 1993.

7. Zlatev J. Wasniewski and K. Schaumburg. Y12M—Solution of Large and
Sparse Systems of Linear Algebraic Equations. In Lecture Notes in Computer
Science, number 121, pages 61-77, Berlin, 1981. Springer- Verlang.

7. Zlatev. Computational Methods for General Sparse Matrices, Mathematics and
Its Applications. 65. Kluwer Academin Publisher, Dordrecht, the Netherlands,
1991.

This article was processed using the IANTRpX macro package with LLNCS style

