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Abstract

The paper presents a set of strategies for addressing
the parallelization of irregular problems in distributed
memory machines� Our methods are targeted to data�
parallel compilers� though some of them are also use�
ful for manual parallelization� We treat the speci��
cation of a broad range of irregular applications� like
numerical algorithms� iterative and direct methods for
the solution of linear systems� and some physic prob�
lems such as �nite elements and molecular dynamics�
These problems are characterized by a particular data
representation which enforces the handling of complex
elements like accesses through indirections� dynamic
data creation and migration and pointer referencing
that go beyond current compilation techniques�

� Introduction

Sparse matrices are used in a large number of im�
portant scienti�c codes� such as linear systems solvers�
molecular dynamics� �nite element methods and cli�
mate modelling� Unfortunately� these applications are
hard to parallelize e�ciently� particularly using au�
tomated compiler techniques� This is because sparse
matrices are represented using compact data formats
which necessitate heavy use of indirect addressing
through pointers stored in index arrays� Since these
index arrays are read in at runtime� current compilers
cannot analyze which matrix elements will actually be
touched in a given loop� making it impossible to de�
termine non�local memory accesses at compile�time�

We provide a set of data�parallel extensions for the
speci�cation of sparse algorithms� which allows the
user the selection of a particular representation for

�The work described in this paper was supported by the
Ministry of Education and Science �CICYT� of Spain under
project TIC�������� The authors assume all responsibility for
the contents of the paper�

the data as well as its distribution� With the knowl�
edge of these elements� it is proven the capability of a
compiler for handling the speci�cation and generating
e�cient code �����

The paper also deals with the �ll�in problem� which
takes place when new nonzero elements are added to
the matrix at run�time	 Those elements have to be
stored dinamically on memory and their accesses have
to be considered� which may also introduce some re�
organization in the algorithm� There have been many
e
orts in the development of algorithms dealing with
�ll�in� such as the wide variety of direct methods for
the solution of linear systems �LU� QR and many oth�
ers�� We focus on the LU decomposition in order to
illustrate the list of problems and the methods we pro�
pose for their solution�

The third scenario with increasing complexity con�
sists of scienti�c applications working with unstruc�
tured domains� such as molecular dynamics and ��
nite element simulations� They do not use sparse ma�
trices to represent problem domains� though its in�
ternal representation pose very similar problems to
those of sparse linear algebra problems	 Data migra�
tion through the problem domain yields the necessity
of a data reorganization during the program execution
and the key to achieve e�ciency lies again on exploit�
ing the spatial locality intrinsic to the algorithm�

The paper is structured as follows� Section �
outlines di
erent representation schemes widely used
in irregular problems� Section 
 describes di
er�
ent data distribution schemes for sparse matrices in
distributed�memory multiprocessors� Section � treats
the parallelization of sparse data�parallel applications
using those representations and distributions� Section
� considers additional problems in the scope of irreg�
ular computation� Section � addresses di
erent solu�
tions for the implementation of the �ll�in problem� We



conclude in Section � and � with some related work
and the conclusions we draw from this work�

� Irregular problems domain represen�
tation

This section provides a brief overview of di
erent
methods for the representation of data in the �eld of
irregular problems� Though we focus on sparse ma�
trices� our analysis can be extended to unstructured
problem domains without loosing generality�

A distinction is made between static and dynamic
formats� the latter is related to situations where the
position and�or the number of elements of the domain
change during the program execution�

��� Static formats for sparse matrices

Several methods have been proposed in the litera�
ture �
� for the representation of sparse matrices with
the aim of saving both memory and computations�
For the purposes of our work in static matrices we
have chosen two formats	

� CRS �Compressed Row Storage� �e�g� Figure
��b� represents a sparse matrix A using three vec�
tors	 the Data vector stores the non�zero values
of the matrix� as they are traversed in a row�wise
fashion� the Column vector stores the column in�
dex of each non�zero element in the Data vector�
and the Row vector marks the beginning of each
row in the Data vector�

� CCS �Compressed Column Storage� �e�g� Fig�
ure ��c� is similar to CRS� just changing rows by
columns�

Our approach can easily be extended to other for�
mat choices and therefore this selection doesn�t a
ect
severely to its generality�

��� Static formats for unstructured prob�
lem domains

Scienti�c applications handling unstructured do�
mains deal essentially with unordered sets of geomet�
ric elements scattered through the geometric domain
of the problem �or problem space�� Each element is
represented by a tuple of n real values determining its
position on each dimension in the problem space�

Since sequential programmers didn�t care about the
possibility of distributing the representations men�
tioned� no special organization of the table is assumed�

which leads to assign positions in the table for ele�
ments that are very far from others involved in the
same computational step�

Nevertheless� this representation can be arranged
internally to make it suitable for a distribution as we
will see later on� So� a distributed representation can
be derived with the same data structure as in the se�
quential program but applied to the local domain� thus
yielding a very similar parallelized code than the se�
quential one� For example� the representation of a set
of points in a 
�D problem space is given in Figure ��

��� Dynamic formats

There are several strategies for storing sparse ma�
trices that allow the insertion of new elements� Some
of them have been proposed by Stappen et al ����� who
target their analysis to the LU decomposition� We fo�
cus on two strategies	

First� in the two�dimensional doubly linked list� a
dynamic data structure which links all the nonzero el�
ements belonging to the same row in a list� and those
belonging to the same column in another list� There�
fore� each item stores� together with the value and the
local indices� pointers pointing to the previous and
next element in its row and column� This data struc�
ture allows a fast data access� either by rows or by
columns� and makes it easier the deletion operation�
However� each item occupies a signi�cant amount of
memory� Though HPF�� covers pointers handling �����
it remains to be seen whether the pointers will be im�
plemented within semi�automatic tools in a near fu�
ture�

The second alternative consists of the data struc�
ture used by the MA��BD routine�� which is not ac�
tually a dynamic one� but it deserves to be mentioned
here for being able of storing the elements the �ll�in
process creates� It stores the elements in a CCS format
and writes the L and U components for the matrix in
another area of memory� also in CCS format� For the
particular case of the LU decomposition� the price to
pay for using such strategy lies in loosing the in�place
behaviour of the algorithm�

Figure 
 describes this approach� where the matrix
containing the linear system is represented in the �rst
three vectors� � AA � IRNA and IPTRA �� Similarly� FACT

stores the nonzeros for matrices L and U � sortered
by columns ��rst� those of U � then� those of L �� IRNF

stores the row indexes� and IPTRU and IPTRL contain

�Stage Factorize in the MA�� Harwell Subroutine Library
for performing a LU decomposition 	
��
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Figure �	 Sample sparse matrix A �a� and CRS �b� and CCS �c� representations for it�
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Figure �	 Left	 ��D problem domain� Right	 Internal representation for problem space�

pointers to the end of each U and L column� respec�
tively� The remaining positions in vectors FACT and
IRNF may be used as workspace�

� Data Distributions

In current approach� the selected representation
formats for sparse matrices involve three arrays � Row �
Data and Col � for a single sparse matrix� Instead of
decomposing these three arrays separately� as is com�
monly done� we adopt the approach of �rst mapping
the �imaginary� dense matrix across a logical mesh
�P� � P�� of P processors� followed by assigning each
non�zero element to the processor that owns the cor�
responding index of the dense matrix�

Thus� the dense matrix�s index space ���nrows�

��ncols� is distributed in such a way that each pro�

cessor is assigned a region of the index�space described
by the expression	
�Rowlo � Rowhi � strider � Collo � Colhi � stridec� � In
this way� processors may be assigned regions of un�
equal sizes but the indexes of each region can be de�
scribed in a regular manner�

Each region is again a sparse matrix which is locally
represented on each processor using the very same for�
mat than in the global case�

Distribution strategies full�lling such conditions
are	

� The Multiple Recursive Decomposition
�MRD� ��� ��� recursively decomposes the sparse
matrix over P processors using horizontal and
vertical partitions� until the matrix has been de�
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composed into P� � P� rectangular submatrices�
At each stage of the partitioning process� the non�
zeros in the submatrix of that stage are divided
as evenly as possible �see Figure ��� For a CRS
local representation� the MRD�CRS distribution
scheme is originated� and similarly for MRD�CCS
with respect to CCS�

� The Block Row Scatter �BRS� ��� ��� uses a
cyclic mapping of the matrix represented by CRS
among P processors� The matrix is subdivided
using a stencil of size P�� and each processor gets
the non�zero elements matching its position in the
stencil� For situations where the matrix is rep�
resented by CCS� the Block Column Scatter
�BCS� scheme is considered�

BRS and BCS similar to scatter�decomposition
distribution schemes� and are useful in situations
where the concentration of non�zeros may be ex�
tremely uneven across the domain� and unpre�
dictable�

For unstructured problem domains only one array
is used to represent the elements� As computations in
scienti�c applications only implicate elements closely
situated in the space of problem domain� it only makes
sense distributing it in such a way that the resulting
distribution preserves most of the spatial locality of
the algorithm�

Then� we developed the Non Discrete Multiple
Recursive Decomposition �ND�MRD�� It yields
a decomposition of problem domain similar to that of
the MRD� but with the main singularity of dealing
with real coordinates for the position of elements in
domain� instead of integer indices for row and column�

Again� the local representation of each resulting
partition is exactly the same� so that code structure
can be preserved in a later step generating parallel
code� thus making compiler development easier� Fig�
ure � shows a partition of the problem domain pre�
sented in �gure �� ND�MRD balances the number of
elements comprised in each region of the partition�

� Compilation techniques for sparse
codes

��� Language Support

Using user�speci�ed directives ����� a compiler can
automatically insert the runtime calls necessary to dis�
tribute matrices and vectors as described earlier� To
achieve this� the user has to give to the compiler the
following pieces of information for each sparse matrix	
the name of the matrix� its index domain� the type of
its elements� the sparse storage format together with
the names of the arrays responsible for representing
such a format� and �nally the data distribution se�
lected for the matrix� The following set of directives
give an example of the extensions that data�parallel
languages require to convey this information to a com�
piler�

REAL A�N�M�� SPARSE �CRS�Data� Column� Row��� DYNAMIC

DISTRIBUTE A���MRD�

REAL Y�N� DYNAMIC� CONNECT �C� WITH A�C���

The keyword DYNAMIC indicates that the distri�
bution will be determined at runtime as a result of
executing the DISTRIBUTE statement� The CON�
NECT keyword is used to align a dense vector with
one of the dimensions of the sparse matrix� here the
vector Y is aligned with the columns of A �
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Figure �	 �a� MRD partitioning of a sparse matrix onto a mesh of �x� processors� �b� A smaller matrix mapped
onto �x� processors� P������s region in bold� �c� The local submatrix data�structures�
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Figure �	 �a� BRS partitioning of a sparse matrix� �b� A smaller BRS matrix partition using a �x� processor
stencil� P������s elements underlined� �c� The local submatrix data�structures�

��� Parallelization

The compiler uses the database as a source of in�
formation from where the work distribution strategies
obtain the input data required for splitting the loop
iterations onto processors as evenly as possible� For
this purpose� the owner computes rule is applied	 As�
signments with scalars or replicated arrays in the left
hand side are executed by all the processors� whereas
assignments with distributed arrays in the left hand
side are only executed by its owner� Parallel loops �

are in this way split by assigning to every processor
the set of iterations in which the corresponding left
hand side variable is local�

However� this task becomes di�cult in sparse loops�
because of the references to sparse vectors that are
normally used in loop bounds	 The way the sparse
data are stored in memory makes Row to be used as
loop bound in the CRS format every time the sparse
algorithm requires to process the elements of an en�

�Loops in which the data dependence don�t prevent the par�
allelization of their iterations to be performed

tire row of the matrix� and the same happens with
the Column vector in the CCS format� Loops with
these features can be partitioned by translating the
global meaning of that Row or Column vector into
its local meaning so that each processor sweeps over
the elements in its local matrix� The bene�ts that
this strategy yields are a well�balanced workload and
a local access to the loop bounds ��

The only exception to the owner computes rule is
the REDUCE statement ����� in which a reduction op�
eration is de�ned over a entire dimension of a sparse
matrix�� The distribution of iterations is performed
this time �rst by making the reduction over the local
sparse matrix of every processor and then inserting
an extra loop that traverses the corresponding dimen�
sion of the processors mesh to produce the �nal global

�In the inspector�executor paradigm followed here �see 	���
and subsequent sections of this paper�� non�local loop bounds
yield an extra communication stage� as the values of those
bounds have to be known before entering the loop� Hence� the
optimization of ensuring the bounds as local becomes valuable
since avoids a level of communication
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Figure �	 Left	 ND�MRD partitioning of a ��D problem domain onto a mesh of � � 
 processors� Right	 Local
representation of resulting partitions

value from the set of partial results� The paralleliza�
tion is guided by the array�s� in the right hand side�
which improves the locality and the communications
overhead�

When the parallelization phase concludes� the out�
put SPMD program has already delimited the set of
computations to be performed by each processor�

��� Code Generation

At this point of the compilation process� the vari�
ables participating in the computation of the right
hand side may address non�local memory� when the
pattern of nonzero entries of the sparse matrix is un�
known at compile�time� the analysis process that car�
ries this out has to be postponed until run�time �ba�
sically� till the MRD or BRS�BCS distributions are
computed and the local vectors of the CRS or CCS
format are determined��

In such cases� the compiler uses an inspector�
executor strategy� Loops are tranformed so that a
preprocessing step� called an inspector is generated�
During program execution� the inspector examines the
global addresses referenced and determines which �if
any� non�local elements must be fetched� It starts with
a loop collecting all the sparse references into auxiliar
arrays� which are then analized by a run�time routine
�localize� to determine the set of local and non�local
indices used in the loop computation� This informa�
tion is saved on a schedule so that the inspector phase
doesn�t have to be computed again when the loop is
reused and the communication pattern remains invari�
ant� thus amortizing the cost of this inspector�

Then� an executor uses this information to fetch
the data and to perform the computation in the orig�
inal loop body� It starts with a gather routine� which
uses the local sparse vectors and the schedule as input
to �ll the bu
er with the corresponding non�local data�
The references in the original loop are then changed
to point either to the local index of the array or the
location in the bu
er where the non�local indices were
brought� Those locations are stored on auxiliar arrays
which are traversed through loop iterations by means
of counters explicitly inserted by the compiler for this
purpose� Those transformations lead to an executor
loop in which all the computation is local�

Run�time techniques based on the inspec�
tor�executor paradigm have been fairly well studied
and described in ����� However� the distributions
and the storage formats used in this case allow some
important optimizations to decrease the overhead of
such techniques when applied over sparse codes� More
precisely� the compile�time information provided by
the user�directives is exploited� and� on top of this�
e�cient schemes are developed for solving indirections
���� and traslating the global indices to the processor
and local index where each datum may be located
��
��

� Compilation for scienti�c codes han�
dling unstructured domains

��� Language support

To allow optimization of these scienti�c codes� the
programmer inserts some directives describing the
problem space �number of dimensions� and identify�



ing the storage format and names of the array hold�
ing the elements of the domain� With this directives�
the compiler has enough knowledge of the special role
of these data structures to handle the code accessing
them in a di
erent way �����

The next code lines show an example of how to
identify to the compiler and distribute a ��D problem
domain with a set of N elements representing vertices�

REAL A������ SPARSE�NONDISCRETE�X�N������DYNAMIC

REAL F�N�� DYNAMIC� CONNECT �F�I� WITH X�I����

DISTRIBUTE A���MRD�MRD�

Note the keyword for distribution is the same used
when distributing sparse matrices� although both im�
plementations are di
erent� However� the style of di�
rectives is the same�

Again� the keyword DYNAMIC indicates that dis�
tribution depends on the value of data at the time of
program execution� So� distribution is not computed
until run time�

Note also that once the compiler has information
about the special characteristics of an array �X�� some
other standard directives like CONNECT can relate
other objects with that array� inheriting also some of
those special characteristics� In this example� aligning
F with X results in distributing F following the ND�
MRD distribution of the problem domain�

After distributing elements in problem domain� we
must solve the other main problem in scienti�c codes	
accessing elements though the usage of indirection ar�
rays� These indirection arrays de�ne relationships be�
tween elements �usually representing a static mesh�
and are prede�ned outside of the program �they form
part of problem input data��

The challenge here is distributing these arrays in
such a way that each member of an indirection ar�
ray is located in the same processor than the elements
pointed by the indirection� This is indicated to the
compiler by using an extension of the ALIGN direc�
tive�

INTEGER G�M�� DYNAMIC

ALIGN �G�I� WITH X�G�I����� �� G

This directive in the example example above indi�
cates that each element G�i� must be stored in the
same processor as the element of X indexed by the
value in G�i��

The following code is an example of how to modify
a scienti�c code to give the compiler information of

the role of some special data structures in the code
that will be treated with special optimizations�

REAL A��������DYNAMIC�SPARSE�NONDISCRETE�X�NV����

INTEGER GRID�NNINTC���� DYNAMIC�

� ALIGNED �GRID�I��� WITH X�GRID�I����

DOUBLE PRECISION DIREC��NNCELL�� DYNAMIC

DOUBLE PRECISION DIREC��NNINTC�� DYNAMIC

DOUBLE PRECISION VAR�NNCELL�� DYNAMIC

DOUBLE PRECISION BP�NNINTC�� BE�NNINTC�� DYNAMIC

DOUBLE PRECISION BW�NNINTC�� BN�NNINTC�� DYNAMIC

DOUBLE PRECISION BS�NNINTC�� BH�NNINTC�� DYNAMIC

DOUBLE PRECISION BL�NNINTC�� DYNAMIC

ALIGN �	�I� WITH GRID�I���� �� DIREC�� DIREC�

ALIGN �	�I� WITH GRID�I���� �� BP� BE� BW� BN

ALIGN �	�I� WITH GRID�I���� �� BS� BH� BL

INTEGER LCC�NNINTC�
�� DYNAMIC

ALIGN �LCC�I��� WITH GRID�I����

INTEGER NINTCI�NINTCF�NEXTCI�NEXTCF

OPEN����STATUS�
OLD
�FILE�
gccg�input
�

READ���� NINTCI�NINTCF�NEXTCI�NEXTCF

READ���� LCC

READ���� BS� BE� BN� BW� BL� BH� BP

CLOSE����

DISTRIBUTE A���MRD�

DO �� T���TIMESTEPS

C need neighbor elements in DIREC� pointed by LCC

ALIGN �DIREC��LCC�I���� WITH DIREC��I��

���

FORALL �� NC�NINTCI�NINTCF

DIREC��NC��BP�NC��DIREC��NC� �

� BS�NC��DIREC��LCC�NC���� �

� BW�NC��DIREC��LCC�NC���� �

� BL�NC��DIREC��LCC�NC���� �

� BN�NC��DIREC��LCC�NC���� �

� BE�NC��DIREC��LCC�NC���� �

� BH�NC��DIREC��LCC�NC�
��

�� CONTINUE

C actualize DIREC� from data in DIREC�

���

�� CONTINUE

STOP

END

Note the SPARSE quali�er for the 
�D prob�
lem domain A�	� 	� 	�� describing its representation by
means of the X�NV� 
� array� Once the compiler is
aware of the special type of the X array� other data
structures are specially related toX by using extended
ALIGN directives�

In this example� GRID represents the de�nition of
a mesh� in which each element is a cube delimited by
� elements of X� This relationship must be taken into
account at the time of distributing GRID� So� the



attribute

ALIGNED �GRID�I��� WITH X�GRID�I����

gives the compiler a valuable tip about how GRID is
to be distributed �actually� the distribution of GRID
will rely on the distribution of X��

Something similar is done with LCC� This array
represents the set of neighbor cubes from a given cube�
The directive

ALIGN �DIREC��LCC�I���� WITH DIREC��I��

indicates that LCC is being used as an indirection to
access the elements in DIREC� and thus� DIREC�
must be realigned taken into account this fact�

��� Parallelization

In codes dealing with unstructured domains� the
order of data in arrays is not relevant �we have sets
of elements of the same class�� Then� the compute
on owner rule is applied while distributing the work
load� So� each computation is performed where the ac�
cessed elements are located� In this way� data accesses
are mostly local� keeping low the communications re�
quired�

The parallelization step of loops during compilation
will be very simple because each processor has only to
sweep over the elements stored in local memory� The
bounds of loops for each partition will be provided at
run time by a simple call to the same run time system
which has performed data distribution in a previous
step�

However� the compiler has to check some con�
straints in the code before applying these simple par�
allelization process� It must be guaranteed that� at
the time of entering a loop� all data accessed will be
stored in local memory� If not� the compiler must in�
sert code for an inpector phase before the loop to look
for data out of local memory�

These constraints on the code allow the compiler to
know that the work distribution in a loop will match
exactly the selected data distribution� so that com�
munication can be predicted before actually execut�
ing the loop� So� accessed to elements in distributed
arrays must not be related with their position in the
global array �that is� neither indexing formulas nor in�
dexing constants are allowed� If indirection arrays are
used� they must be aligned before with the accessed
elements by an extended ALIGN statement� Also� in
the case of using indirection arrays� the compute on

owner rule can consider ownership of the indirection
array instead of the data elements accessed through
this indirection�

��� Code generation

As the �nal data distribution and the indirections
for access pattern depend on the actual input data
during program execution� part of the analysis must
be done at run time by using a run time system devel�
oped to support irregular data distribution and ma�
negement�

This run time system is a set of library rou�
tines designed to handle arrays as abstract objects�
The library is known as Data Distribution Layer
�DDLY� and has been developed by our research
group� An early description of the interface and func�
tionality of the library can be found in �����

The basic capabilities of the DDLY run time sup�
port are distributing arrays following both regular and
pseudo�regular distributions ���� handling of indirec�
tion arrays �complex alignment with other arrays yet
distributed�� gathering of non local elements� reduc�
tions over several partitions and parallel input�output
between arrays in memory and disk �les�

Data distribution and indirections alignment is per�
formed after input data is available� by inserting calls
to the DDLY routines which perform data analysis and
distribute data following the results of that analysis�

If the parallelized code matched the code restric�
tions to guarantee that program access pattern com�
plies with data access locality expected by the library�
then we need no inspection of data accesses in loops�
In that case� the compiler inserts a DDLY routine call
before the loop to prefetch non local accesses before
actual execution� The communication pattern for this
operation was computed at the time data was dis�
tributed by another call to the library�

In case the compiler can not guarantee any condi�
tions about the behaviour of data accesses� an inspec�
tor is added before loops to construct a communication
schedule for execution�

� Sparse matrix �ll�in

The LU decomposition is typically the most out�
standing example where the �ll�in problem occurs� It
is applied to the solution of linear systems� Ax � b�
where A �the system matrix� is sparse and with di�
mensions n � n� The algorithm factorizes the matrix
in a product of a lower triangular matrix� L � by an



upper triangular matrix� U � such that	

PAQ � LU ���

where the permutation matrices� P and Q � are needed
due to the permutation process that takes place dur�
ing the factorization in rows and columns for A � with
the aim of preserving the sparsity rate and ensuring
the numerical stability� Matrices L y U have also di�
mensions n � n� but their density is bigger than the
one of the A matrix because of the �ll�in�

Once the system decomposition has been per�
formed� LUx � b is solved by means of forward�
substitution and back�substitution stages� In general�
the system resolution may be organized into four dif�
ferent steps	

�� Reordering	 It realigns the matrix with the aim
of reducing the complexity of its processing in
subsequent stages� For instance� A can be sorted
in order to produce a block triangular or block
diagonal matrix� and after that� each block can
be independently factorized �where the �ll�in is
con�ned��

�� Analyze	 It chooses row and column permuta�
tions � P and Q � suitable for the factorization�
These P and Q matrices will require the selec�
tion of pivot elements� which have to be chosen
such that� on the one hand� we preserve the spar�
sity rate �applying� for instance� the Markowitz
criterium�� and on the other hand� the numeri�
cal stability is guaranteed �choosing those pivots
greater than a certain threshold value��


� Factorize	 It accepts a matrix A together with
recommended permutations and perform the fac�
torization PAQ � LU � This may be the most
consuming�time stage� since it performs the up�
date operations for �oating�point numbers�

�� Solve	 It uses the factorization to solve the equa�
tion Ax � b or ATx � b� It includes the forward
and backward substitution stages�

The Analyze and Factorize stages can be joined
together in a single �Analize�Factorize� step if� for
each update iteration� we perform a column and row
permutation with the aim of ensuring the numerical
stability and maintaining the sparsity rate as well�
From now on� we only consider step 
 �Factorize��
since it is the only one that contains �ll�in�

��� Right�looking LU

There are several ways of organizing a LU decompo�
sition algorithm for general sparse unsymmetric ma�
trices ���� Perhaps the most popular one is that named
right�looking LU or submatrix�based method� It con�
sists of performing n sequential iterations by means of
a loop with index k� Each of these iterations chooses a
pivot� permutes the matrix so that the pivot occupies
the position �k� k� and �nally the submatrix de�ned by
pivot k is updated� that is� the positions �k��	n�k	n��

The parallel algorithm can be mapped over a mesh
of P � Q processors using a scatter data distribution
and a local representation with ��D doubly linked list�
This algorithm is extensively described in ���� together
with a performance evaluation on the Cray T
D�

From the point of view of an e�cient computa�
tion� the dynamic memory allocation for each new el�
ement is time�consuming� and the list traversing even
more� Finally� it is very well known the problem ex�
hibited by the semiautomatic paralelization of codes
when pointer�based structures are involved� Nowa�
days� there are no tools with an e�cient handling of
this kind of data structures� and the costs of develop�
ment for those strategies are still under evaluation�

Therefore� the main problem that presents the LU
algorithm from the point of view of the semiauto�
matic parallelization is the pointer�based data struc�
ture used� This structure is almost unavoidable due to
the right�looking organization of the algorithm� which
enforces� for each iteration� to update the whole re�
duced submatrix� thus requiring the �ll�in handling
all over the submatrix� In this way� is is necessary to
traverse almost all the rows and columns in that sub�
matrix� updating some elements and adding others�
Fortunately� we can avoid this drawback reorganizing
the algorithm	 The right�looking implementation for
the algoritm can be replaced by another called left�
looking� This strategy is described in the subsequent
section�

��� Left�looking LU �MA�	


As it will be seen� from the data access point of
view� the left�looking variant is better than the right�
looking one� This strategy� also known as column�
based method �or row�based method�� updates for
each iteration in loop k the k � th column using the
k � � columns previously updated�

For this kind of methods is common the use of ordi�
nary partial pivoting� that is� the pivot is chosen from
the current column to be processed� having into ac�



count just numerical considerations� This implies the
Analyze phase to be given the corresponding columns
preordering in such a way that the sparsity rate is
guaranteed�

An outline for the left�looking algorithm is showed
in Figure ��

Note that the structure of the algorithm is divided
in two di
erent steps for each iteration	

� Symbolic factorization �line 
�	 Initial stage�
where the nonzero structure for the column is
predicted� This prediction is not more time�
consuming than the numerical factorization when
we use depth��rst search and topological order�
ing� such as proven by Gilbert and Peierls �����
This simbolic factorization was speeded�up by
Eisenstat and Liu ���� who designed a pruning
technique �line ��� to reduce the amount of struc�
tural information required for the symbolic fac�
torization�

� Numerical factorization �lines �� � and ��	 They
perform the arithmetic operations strictly needed�
using the information generated by the symbolic
factorization�

Figure � illustrates the updating process for the k�
th column by two other formerly updated columns� cr�
and cr��

As it can be seen� this column�oriented organi�
zation� matches perfectly the second data structure
explained in Section ��
� Once every column has
been updated �maybe using temporarily the workspace
area�� it will be stored on the FACT and IRNF vec�
tors by properly updating the IPTRU and IPTRL

pointers as Figure 
 showed�

However� from the point of view we are interested
on� such algorithm organization will not let us to ex�
tract as much parallelism as in the right�looking ver�
sion� In order to avoid a high number of communi�
cations� we should distribute rows by cyclic such as
done by the BRS strategy� thus being able of updat�
ing columns in parallel�

On the other hand� skipping the use of linked lists
and choosing a more static data structure instead�
makes it easier the data�parallel compiler handling
of this algorithm� For this purpose� new directives
have to be developed for conveying information to the
compiler about the distribution and representation the
user chooses for the data�

As far as the �ll�in operation is concerned� a static
representation enforces the user to know the state�
ments of the algorithm in which the �ll�in occurs� since
it is not possible to give in a vector reference the global
coordinates for other elements than those already in�
cluded in the matrix� For that purpose� we need to
enable an intrinsic function in the data�parallel lan�
guage� FILL�IN������ whose functionality lies in ac�
cepting parameters for the matrix being updated as
well as the value� row� and column for the new element
being added� The compiler accepts this function and
is responsible for inserting within the target parallel
code the corresponding run�time support for carrying
out the insertion of the element in the static structure�
That is� �ll�in is not transparent to the user whatso�
ever� and this is the cost to pay for simplifying the
compiler development and implementation in a more
realistic manner�

r1 r2

L(K+1:n,K)

U(1:K,K)

S(p)

S(r1)

S(r2)

C C

K

Figure �	 Column k updated by two previously up�
dated columns�

� Related work

There have been many e
orts aimed at providing
compile�time and run�time support for irregular prob�
lems such as ��
� ��� ���� Most of the research on irreg�
ular problems in Fortran has concentrated on handling
single�level indirections� like the PARTI and CHAOS
���� toolkits� well known runtime libraries extensively
used to parallelize irregular codes�

Based on the standard inspector�executor



� DO k���n � For each column
� S � A���k� � Column k of A
� Symbolic factor� determine the columns C � fcr�� cr�� ���� crig �ri � k� of L to update S
	 DO for each cr � C in topological order

 S � S � S�r� � cr
� END DO

� Pivot� interchange S�k� and S�p�� where jS�p�j � maxjS�k � n�j

 U�� � k� k� � S�� � k�
� L�k� � � n�k� � S�k � � � n�k��U�k�k�
�� Prune simbolic structure based on column k
�� END DO

Figure �	 Outline for the left�looking LU algorithm�

paradigm� those libraries have been used as run�
time support in compiler prototypes� such as the
ARF compiler ����� as well as by the Fortran ��D ���
and Vienna Fortran compilers ����� Those compilers
handle irregular problems in a generic manner�
providing either a descriptor �mapping array� that
describes the target processor for each element of an
array individually or� using a more general concept�
user�de�ned distribution functions ����� Nevertheless�
due to their generality and a lack of compile�time
information on the way in which data is accessed�
these strategies produce relatively ine�cient target
code and introduce a big memory overhead�

In practice� irregular application codes have com�
plex access functions that go beyond the scope of
current compilation techniques� The �rst attempt at
dealing with multiple levels of indirection inside a com�
piler was by Das et� al����� who suggested a technique
based on program slicing that transforms the code con�
taining multi�level indirect references into code that
contains only a single level of indirection by using mul�
tiple inspector stages� The technique used by SAR
�Sparse Array Rolling� ���� is di
erent in that it re�
solves multiple levels of indirection by exploiting the
semantic relations between the index arrays involved
in the indirect accesses�

Another approach for parallelizing sparse codes is
that followed by Bick and Wijsho
 ���� who have
implemented a restructuring compiler which auto�
matically transforms programs operating on dense ��
dimensionalmatrices into codes that operate on sparse
storage schemes� During this transformation� char�
acteristics of both the target machine as well as the
nonzero structures is accounted for� so that one orig�
inal dense program can be mapped to di
erent im�
plementations that tailored for particular instances of
the same problem� This method simpli�es the task of
the programmer at the risk of ine�ciencies that can

result from not allowing the user to choose the most
appropriate sparse structures�

	 Conclusions

One of the major reasons why data�parallel compu�
tation has not achieved outstanding results �in terms
of functionality and e�ciency� has been the develop�
ment of very general compilation strategies without a
deep orientation to real codes�

It is clear that the data�parallel compilation of ir�
regular problems still requires a speci�c study of each
problem� as current compilers do not provide general
solutions for a broad range of algorithms�

This paper has presented a set of extensions partic�
ularly targeted to the elements involved in the spec�
i�cation of parallel and irregular applications� Those
language elements convey additional information to
the compiler that can be used to simplify its imple�
mentation as well as to produce a more e�cient �nal
code�

The information provided through annotations
comes from two di
erent sources	 The data represen�
tation� which is usually well known to the user and it
does not require many e
orts to be provided� and the
choice of a particular data distribution� which necessi�
tates knowledge about the features of the accesses to
the distributed arrays in the code if the user wants to
achieve a good average performance�

The overall result is a powerful mechanism that can
be used by the user to hide the low�level work when
parallelizing irregular problems and exploit the local�
ity exhibited by the application� thus leading to a tar�
get parallel code without sacri�cing the performance
of its execution�
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