
Iterative and Direct Sparse Solvers on Parallel Computers

R. Asenjo
G. Bandera
G.P. Trabado
O. Plata
E.L. Zapata

September 1996
Technical Report No: UMA-DAC-96/24

Published in:
Euroconference: Supercomputation in Nonlinear and Disordered Systems:
Algorithms, Applications and Architectures,
San Lorenzo de El Escorial, Madrid, Spain, September 23-28, 1996, pp. 85-99

University of Malaga
Department of Computer Architecture
C. Tecnologico • PO Box 4114 • E-29080 Malaga • Spain

ITERATIVE AND DIRECT SPARSE SOLVERS

ON PARALLEL COMPUTERS

R� ASENJO� G� BANDERA� G�P� TRABADO�

O� PLATA and E�L� ZAPATA

fasenjo�bandera�guille�oscar�ezapatag�ac�uma�es

Department of Computer Architecture� University of M�alaga�

C� Tecnol�ogico� PO Box ����� E����	� M�alaga� Spain

Solving large sparse systems of linear equations is required for a wide range of
numerical applications� This paper addresses the main issues raised during the
parallelization of iterative and direct solvers for such systems in distributed mem�
ory multiprocessors� If no preconditioning is considered� iterative solvers are simple
to parallelize� as the most time�consuming computational structures are matrix�
vector products� Direct methods are much harder to parallelize� as new nonzero
values may appear during computation and pivoting operations are usually ac�
complished due to numerical stability considerations� Suitable data structures and
distributions for sparse solvers are discussedwithin the framework of a data�parallel
environment� and experimentally evaluated and compared with existing solutions�

� Introduction

Over the last decades� there have been major research e�orts in developing e��
cient parallel numerical codes for distributed�memory multiprocessors� emerg�
ing the data�parallel paradigm as one of the most successful programming
models� Recently introduced parallel languages� such as Vienna Fortran���

Fortran D �� and High�Performance Fortran �HPF� ����� follow this approach�
All these languages had initially focused on regular computations� that

is� well�structured codes that can be e�ciently parallelized at compile time
using simple data �and computation�mappings� However� the current language
constructs lead to inne�ciencies when they are applied to irregular codes� such
as sparse computations� appearing in the majority of scienti�c and engineering
applications �HPF ��	 is an initial attempt to correct these shortcomings��

A wide range of these applications include the solution of large sparse
systems of linear equations� There are two di�erent approaches to solve such
systems� direct and iterative methods� In direct methods����� the system is
converted into an equivalent one whose solution is easier to determine by ap�
plying a number of elementary row and
or column operations to the coe�cient
matrix� A di�erent approach is taken in iterative methods����� where successive
approximations to obtain more accurate solutions are carried out�

The convergence rate of an iterative solver depends greatly on the spectrum
of the coe�cient matrix� Hence� these methods usually involve a second matrix

�

that transforms the coe�cient matrix into one with a more favorable spectrum
�preconditioning�� Although iterative methods may have such convergence
problems� they present a high degree of spatial locality� due to the existence
of a sparse matrix�vector product as a basic kernel� This fact makes these
algorithms very suitable for parallelization� A main issue in this process is to
choose a sparse data distribution scheme which enhances locality and facilitates
the location of nonlocal data�

Direct methods� on the other hand� exhibit di�erent problems to those of
iterative methods� Factorization of the coe�cient matrix may produce new
nonzero values ��ll�in�� so that data structures must consider the inclusion of
new elements at runtime� Also� row and
or column permutations of the coe��
cient matrix are usually accomplished in order to assure numerical stability and
reduce �ll�in� All these characteristics make direct methods much harder to
parallelize than iterative solvers �the exploitable parallelism is typically lower��
However� direct methods are free of convergence problems and hence are es�
sential for many cases in which iterative solvers may fail� A major aspect from
the parallelization point of view is thus the data structure chosen to store the
partitioned data in the local memories of the processors� Standard compressed
formats used for representing sparse matrices are not the most suitable schemes
to support e�ciently the �ll�in problem and pivoting operations�

The rest of the paper is organized as follows� In Section � we will dis�
cuss the computational aspects of two important kernels in iterative and di�
rect schemes� the conjugate gradient �CG� method and the LU factorization�
The discussion will be focused on sparse systems� In Section �� parallel and
data locality issues of CG and LU algorithms will be introduced enclosed in a
data�parallel framework� The description will highlight the importance in per�
formance terms of choosing a suitable data structure and distribution for the
sparse matrices� An experimental performance analysis based on this space of
options will be discussed in Section � and compared� in some cases� with the
capabilities of an existing data�parallel compilation system� Finally� Section �
presents some concluding remarks�

� Sparse Matrix Algebra

��� Sparse Storage Schemes

A matrix is called sparse if only a relatively small number of its elements are
nonzero� A range of schemes have been developed in order to store only the
nonzero entries of a sparse matrix� this way obtaining considerable savings
in terms of both memory and computation overhead�� In our work we have

�

k � �� x � �� r � b�
while ��k � �kbk�

�
and k � kmax�

�k � rT r
k � k 	

if k �

p � r
else

� � �k����k��
p � r 	 �p

endif

q � Ap
� � �k���p

T q
x � x	 �p
r � r � �q

endwhile

Initialize � and � to the n�by�n identity matrix
Initialize R and C
do k �
� n�

Find pivot p � ��� 	� �Markowitz criterion�
Swap A�k�
 n� and A���
 n�
Swap A�
 n� k� and A�
 n� 	�
Swap R�k� and R���
Swap C�k� and C�	�
Swap ��k�
 n� and ����
 n�
Swap ��
 n� k� and ��
 n� 	�
A�k 	
 n� k� � A�k 	
 n� k��A�k� k�
do j � k 	
� n

A�k 	
 n� j� � A�k 	
 n� j�
�A�k 	
 n� k��A�k� j�

enddo

Update R and C nonzero counts
enddo

�a� �b�

Figure
 Outline for the �a� Conjugate Gradient algorithm with no preconditioning� and
the �b� right�looking LU factorization algorithm

considered the Compressed Row and Column Storages �CRS and CCS�� The
CRS format represents a sparse matrix A as a set of three vectors �DATA� COL
and ROW�� DATA stores the nonzero values of A� as they are traversed in a row�
wise fashion� COL stores the column indices of the elements in DATA� and ROW

stores the locations in DATA that start a row� By convention� we store in the
position n�� of ROW �n is the number of rows of A� the number of nonzero
elements of A plus one� The CCS format is identical to the CRS format except
that the columns of A are traversed instead of the rows�

��� Conjugate Gradient Algorithm

The Conjugate Gradient �CG� method is the oldest and best known� but ef�
fective nonstationary method for the solution of symmetric positive de�nite
systems�� Ax � b� Such class of methods di�er from stationary methods in
that the computation involve information that changes at each iteration�

CG belongs to the class of methods with short recurrences� that is� meth�
ods that maintain only a very limited number of search direction vectors� The
method proceeds by generating vector sequences of iterates� residuals corre�
sponding to the iterates� and search directions used in updating the iterates
and residuals� As Fig� � �a� shows� in every iteration of the method� two inner
products are performed in order to compute update scalars �� and ��� The

�

solution vector x is updated by a multiple ��� of the search direction vector p�
Correspondingly the residual r is updated by the same multiple but of q� the
resulting vector of the sparse matrix�vector product� Ap� Hence we can point
out that only one sparse matrix�vector multiplication is required per iteration�

From the computational point of view it is important to analyze the con�
vergence properties of the CG method� It has been observed that this method
works well on matrices that are either well conditioned or have just a few
distinct eigenvalues� It is thus usual to precondition a linear system so that
the coe�cient matrix assumes one of these forms� As an example� one of the
most important preconditioning strategies involves computing an incomplete
Cholesky factorization of the coe�cient matrix�

��� LU Factorization Algorithm

The LU factorization is used for the conversion of a general system of linear
equations to triangular form via Gauss transformations���When it is applied to
a n�by�n matrix A produces a couple of n�by�n matrices� L �lower triangular�
and U �upper triangular�� and the n�by�n permutation matrices � and �� such
that �A� � LU �

There are di�erent strategies to deal with the sparse LU factorization��

The approach considered in this paper corresponds to the right�looking LU
generic method� This strategy� also called submatrix�based method� performs
a total of n iterations� as shown in Fig� � �b�� In the k�th iteration a pivot is
chosen� a column and a row permutations may be performed so that the pivot
occupies the �k� k� position� and� �nally� the submatrix de�ned by the pivot is
updated �that is� elements �k � � � n� k � n� of A��

As a consequence of this submatrix updating� �ll�ins �that is� new nonzero
entries� may occur in matrix A� This fact introduces complexities in the sparse
storage structures and increments the memory and computation overheads�
Typically� pivot elements are chosen in order to guarantee numerical stability
and to maintain sparsity� Markowitz criterion�� �used in Fig� � �b�� is a simple
but e�ective one of such strategies� This heuristic is based in the minimization
of the �Ri����Cj ��� factor� where Ri �Cj� counts for the number of nonzero
elements in the i�th row �j�th column��

� Parallelization of Sparse Solvers

��� Sparse Data Distributions

Current data�parallel languages� such as HPF� Vienna Fortran or Cray Craft�
include the most useful and simple schemes for distributing data across the

�
BBBBBBB�

� �� � � � �

� � � � � �

�� � � � � �

� � � � � 	�

� � � �	 � �

� � � � �� �

� � �� � � �

� � � � �� �

� �� �� � �	 �

�	 � � �� � �

�
CCCCCCCA

�
BBBBBBBBBBBB�

� �� � � � �

� � � � � �

�� � � � � �

� � � � � 	�

� � � �	 � �

� � � � �� �

� � �� � � �

� � � � �� �

� �� �� � �	 �

�	 � � �� � �

�
CCCCCCCCCCCCA

DATA COL ROW

�� � �

�� � �

�� � �

�	 � �

�

�

�a� �b� �c�

Figure � The BRS partitioning �b� of the sparse matrix �a� for a ��� processor mesh� where
the data elements for processor � are underlined and represented compressed �CRS� in �c�

processors� speci�cally� block� cyclic and a combination of both� All these
distributions constitute the basis for mapping dense data structures on the
local memories of a distributed�memory multiprocessor�

In the case of sparse matrices� the use of compressed formats for storing
them implies the appearing of array indirections in the code �irregular accesses
to data�� Our approach is to de�ne sparse �pseudo�regular� data distributions
as extensions to the classical block and cyclic regular distributions� such as
MRD �Multiple Recursive Decomposition� and BRS �Block Row Scatter� or
BCS �Block Column Scatter������

MRD is a generalization of the Binary Recursive Decomposition � and
it is intended for algorithms that exhibit strong spatial data locality� BRS
�BCS�� on the other hand� extends the application domain of the regular cyclic
distribution� In this way� BRS �BCS� speci�es a cyclic distribution of the sparse
matrix represented by its CRS �CCS� compressed format� All the local sparse
matrices are represented by using the same format �CRS o CCS� of the original
one� as shown in Fig� ��

An HPF�like description of the BRS distribution of a sparse matrix may
be as follows�

�HPF� SPARSE�CRS�DATA�COL�ROW�� �� A�N�N�

�HPF� DISTRIBUTE�CYCLIC�CYCLIC� ONTO MESH �� A

The SPARSE directive means that the sparse matrix A is actually repre�
sented in a CRS format� using the arrays DATA� COL and ROW� The BRS dis�
tribution is a cyclic distribution of the compressed representation of a sparse
matrix� Stating CYCLIC in a DISTRIBUTE directive is understood by the com�
piler as applying a BRS distribution to the DATA� COL and ROW arrays declared

�

in the SPARSE statement� This way we have the bene�ts of a cyclic data
distribution �load balancing and simple and limited communication patterns�
applied to a sparse matrix independently of the compressed format used to
represent it�

��� Parallelization Issues for the CG Method

The basic time�consuming computational structures of iterative methods� such
as CG� are inner products� vector updates� matrix�vector products� and pre�
conditioning� The inner products can be easily parallelized� Each processor
computes the inner product of two segments of each vector �local inner prod�
ucts�� Afterwards� the local inner products have to be sent to other processors
in order to be reduced to the required global inner product� Vector updates�
on the other hand� are trivially parallelizable� as each processor updates its
own �local� segment of the vector�

The matrix�vector products are not so easily parallelized in many cases�
It is usual that each processor has only a segment of the vector in its memory�
Depending of the bandwidth of the sparse matrix we may need communica�
tions for other elements of the vector �a reduction operation may be needed��
which may lead to communication problems� Due to the use of compressed for�
mats to store sparse matrices �CRS or CCS� for instance�� a crucial potential
problem is to get the knowledge about the location of the vector elements �or
partial products� that each processor may need to complete the matrix�vector
product� It is thus very important to distribute the sparse data across the
local memories in such a way that this location of vector elements is no longer
a time�consuming operation�

BRS is an example of this kind of data distribution� as the sparse matrix
is mapped on the local memories as a dense one� Hence the local matrices
are sparse and are independently stored compressed in the corresponding local
memory� This way� the elements of the vector can be easily aligned to the
columns of the matrix just by using a cyclic distribution �by rows� and a
partial replication �by columns� of the vector� This point will be elaborated in
the next Section�

Finally� preconditioning is often the most problematic part in a parallel
environment� Incomplete decompositions of the coe�cient matrix form a pop�
ular class of preconditionings that usually introduces recurrence relations that
are not easily parallelized� These problems have led to searches for other more
simple preconditioners� such as diagonal scaling or polynomial precondition�
ing� In any case� the preconditioning parallelization problem will not be further
considered in this paper�

�

��� Parallelization Issues for the LU Factorization

The right�looking LU solver presents two sources of parallelism we can exploit�
as can be derived from the pseudo�code of Fig� � �b�� The �rst source of
parallelism corresponds to the updating of the reduced matrix �de�ned as the
�n�k��by��n�k� submatrix of A� such that k � i� j � n� in the k�th iteration��
that is� the loops at the end of each iteration� The second one comes from the
sparse nature of A� In many cases it is possible to merge several updates of
range one in only one update process of multiple range �say� s�� by modifying
the Markowitz strategy in such a way that we search for a pivot set containing
s compatible pivots� instead of only one pivot element �a couple of pivots� Aij

and Akl� are said compatibles if Ail � Akj � 	��

Two major issues have to be considered� �ll�in and pivoting� It is known
that for� for instance� symmetric positive de�nite matrices� a sparsity preserv�
ing ordering can be selected in advance of the numeric factorization� indepen�
dent of the particular values of the nonzero entries �that is� only the patterns
of the nonzeros matters�� Based on this process� called symbolic factorization�
the location of all �ll elements can be anticipated prior to the numeric factor�
ization� and thus an e�cient static data structure can be set up in advance
to accommodate them� Unfortunately� in general� we also have to take into
account pivoting for numerical stability� which obviously require knowledge of
the nonzero values� and would introduce a con�ict with the symbolic factor�
ization� Therefore� in order to deal with the general case� to accommodate
�ll�ins as they occur we need some dynamic data structure for storing the lo�
cal sparse matrices� Naturally� this introduces signi�cant overheads due to the
adjusting of the dynamic structures� Additionally� the data structures should
allow an e�cient implementation of the pivoting operations� that is� row and
column swapping� We have experimented with two�dimensional doubly linked
lists� where each item in such structure stores not only the nonzero value of
the local matrix entry and its corresponding row and column indices� but also
pointers to the previous and next nonzero element in its row and column �four
pointers in total��

Doubly linked lists make easy the insertion and delete operations and�
hence� we can deal with the �ll�in and pivoting problems in a e�cient way�
But linked lists have also severe drawbacks� The dynamic memory allocation
for each new element is time�consuming� and the list traversing even more� as
well as they consume a considerable amount of memory per element� Other
major problems are the memory fragmentation due allocation
deallocation of
items ��ll�in�� and the spatial data locality loss �cache inne�ciency� during
traversing rows and columns due to pivoting operations �pivoting does not

�

move data� only changes pointer references��
From the point of view of an e�cient computation� packed vectors �for

instance� CRS or CCS compressed formats� are a much more compact data
structure for storing local sparse matrices than linked lists� and allow faster
accesses by rows or columns to the matrix elements� But� regrettably� they do
not support the complex pivoting operations and �ll�ins that occur in the LU
factorization� In order to deal with such problems we have to resort to auxil�
iary bu�ers and implement garbage collection operations� both with signi�cant
increases in terms of memory and computation overheads�

� Experimental Evaluation

To demonstrate the need for de�ning special data storage structures and distri�
butions to support sparse applications e�ciently� we carried out a set of eval�
uation experiments comparing the current data�parallel software technology
�speci�cally� block and cyclic regular data distributions� with those described
previously�

All the experiments were conducted in a Cray T�D multiprocessor us�
ing the Craft data�parallel compilation system��	� the SHMEM native shared�
memory library���� and the optimized PVM message�passing library� In order
to take into account the e�ects of the dimensions� sparsity rate and nonzero
patterns in the input sparse matrix� we chose for the experiments a number
of sparse matrices taken from the Harwell�Boeing collection��� such as shown
in Table �� BCSSTK�� and BCSSTK�	 are large and very sparse matrices
used in eigenvalue problems while LNS���� is also a very sparse but quite
small matrix taken from compressible �uid �ow codes� Less sparse �and small�
matrices are JPWH���� used in circuit physics modeling� and SHERMAN��
appearing in oil reservoir modeling codes� Finally� much less sparse matri�
ces are PSMIGR�� containing population migration data� SHERMAN�� for oil
reservoir modeling� and STEAM�� used in oil reservoir simulation�

��� Parallel Implementations Comparison for the CG Method

The most time�consuming computation included in the �no preconditioned� CG
method corresponds to the sparse matrix�vector product executed in each iter�
ation� This is also the most complex computation structure in CG in terms of
parallelization� A major issue at this point is thus the data distribution scheme
used to map the sparse matrix elements to the processor local memories� and
the scheme adopted to align the vector elements to the matrix elements�

We made three parallel implementations for the CG method stressing these

�

Matrix Size Nonzeros Sparsity Rate Features

BCSSTK��
�����
���� �
���� �

�� Large and sparse
BCSSTK�� �����������
������ �

�� Very large and sparse
JPWH��
 ��
���
 ���� �
�
� Small and quite sparse
LNS���� ��������� ����� �

�� Quite small and sparse
PSMIGR
 �
����
�� ���
�� �
�
� Quite small and dense
SHERMAN

����
��� ���� �
��� Small and quite sparse
SHERMAN�
����
��� �����

��� Small and quite sparse
STEAM� �������
���� �
��� Small and quite dense

Table
 Benchmark sparse matrices taken from the Harwell�Boeing suite

issues� The �rst version was coded using the Cray T�D Craft Fortran data�
parallel environment� The sparse coe�cient matrix �A in Fig� � �a�� is repre�
sented using the CRS format �that is� three vectors�� All the three vectors of
the compressed format as well as the rest of the vectors of the CG algorithm
are mapped on the processors using the Craft cyclic data distribution scheme
�cdir� shared V��block���� for a generic V vector��

The other two parallel versions were written in standard C and Fortran���
respectively� using the BRS data distribution scheme for the sparse coe�cient
matrix� The rest of the �dense� vectors of the algorithm are distributed using a
regular cyclic scheme� In order to minimize communication overhead we must
align the p vector with the columns of A� and the q vector with its rows �see
Fig� � �a��� This is accomplished arranging the set of processors as a mesh and
distributing p cyclicly by columns of processors �and replicated across rows
of processors�� and q also cyclicly but by rows of processors �and replicated
across columns of processors�� This way all the partial matrix�vector products
are completely local� and the needed reduction operations �to obtain global
matrix�vector products� imply regular communications� In both cases� the
Cray T�D SHMEM routines were used for e�cient communications among
the processors�

The Craft programming environment allows the programmer to distribute
data across the processors using block and cyclic schemes� Here we report
results derived from using only the second scheme due to two reasons� First�
we are mainly interested in evaluating our BRS data distribution scheme� which
is based on the cyclic scheme� Second� we have made implementations of the
CG method using both mapping schemes� block and cyclic� For all tested
sparse matrices �taken from Table �� cyclic distribution yields a signi�cant
better performance than block�

A two�by�two comparison of the three above parallel codes for two repre�
sentative sparse matrices is shown in Fig� �� These results show that the Craft

�

1 2 4 8 16 32
Number of Processors

0

1

2

3

4

5

6

7

tim
e

C
ra

ft
(C

Y
C

LI
C

)
/ t

im
e

F
77

 (
B

R
S

)

Craft (CYCLIC) vs F77 (BRS)

BCSSTK29
PSMIGR1
BCSSTK30

1 2 4 8 16 32
Number of Processors

1

2

3

4

5

6

7

8

9

10

tim
e

C
ra

ft
(C

Y
C

LI
C

)
/ t

im
e

C
 (

B
R

S
)

Craft (CYCLIC) vs C (BRS)

BCSSTK29
PSMIGR1
BCSSTK30

�a� �b�

Figure � Improvement over Craft �CYCLIC distribution� for the manual �a� Fortran and
�b� C parallel codes of the CG algorithm using BRS distribution

�cyclic� code is more than two times slower than the Fortran�� �BRS� code�
and more than four times slower than the C �BRS� code� In addition� the
much better performance of the C compiler against the Fortran�� compiler on
the Cray T�D is also stand out� The main reason for the low performance of
the Craft code is that the compiler does not use the knowledge that the three
vectors for the CRS format actually represent a sparse matrix� Hence there is
no alignment between A and p and q� which produces complex communication
patterns �in order to locate nonlocal data��

Fig� presents� on the other hand� the parallel e�ciency for the three
codes using the same sparse matrices� From this �gure we can emphasize the
scalability properties of the codes� Observe that the fastest code �C program�
is also the less scalable program �for BCSSTK�	�� The Craft compiler obtains
the best scalable program due to its good behaviour during compilation� for
instance� using intrinsic BLAS routines 	 for vector operations�

Finally� Fig� � shows the execution time per iteration of the three par�
allel codes� where the fraction of time consumed in the sparse matrix�vector
product� and the other fraction of time consumed in the rest of �dense� oper�
ations are highlighted� It is important to note that the CG algorithm spend
most of its time �more than �	 or �	�� executing matrix�vector products�
So� the scheme used to distribute the sparse matrix across the processors� and
the correct alignment of the dense vectors� constitute the key to obtain high�
performance implementations of the CG method� as the above experimental
results show�

�	

1 2 4 8 16 32
Number of Processors

0.5

0.6

0.7

0.8

0.9

1.0

1.1
E

ffi
ci

en
cy

BCSSTK30

Craft code (Cyclic)
F77 code (BRS)
C code (BRS)

1 2 4 8 16 32
Number of Processors

0.5

0.6

0.7

0.8

0.9

1.0

1.1

E
ffi

ci
en

cy

PSMIGR1

Craft code (Cyclic)
F77 code (BRS)
C code (BRS)

�a� �b�

Figure � E�ciency for the Craft �CYCLIC distribution�� Fortran and C �BRS distribution�
parallel CG codes

��� Parallel Implementations Comparison for the LU Factorization

Unlike the CG method� the parallelization of the right�looking LU factorization
must deal with the �ll�in and pivoting problems� both di�cult to solve in
an e�cient way� Now there are two important issues to be considered� the
distribution of the sparse matrix elements across the processors and the data
structures used to store the local sparse data�

In order to study the above computational aspects� two parallel implemen�
tations of the LU factorization algorithm were made� one of them based on
doubly linked lists� and the other one based directly on a standard compressed
format �also called packed vectors�� Both codes� as in the CG solver� consider
the processors arranged as a rectangular mesh� The linked list based version
was coded in C and PVM routines were used for message�passing� In order to
reduce the communication overhead� the low latency communication functions
pvm fastsend and pvm fastrecv �non�standard PVM routines� were used for
messages of length less than ��� bytes� The packed vectors based code� on the
other hand� was coded in Fortran�� plus Cray T�D SHMEM routines to access
nonlocal data�

The �rst parallel version maps the coe�cient matrix on the processors
using a BCS distribution� storing the corresponding sparse local matrices on a
doubly linked list data structure� � Fig� � �a� reproduces the parallel execution
times obtained for di�erent mesh sizes and sparse matrices taken from Table ��
With the use of linked list to store the local matrix elements� the appearing
of �ll�ins and the pivoting operations �row and column swapping� are handled

��

1 2 4 8 16 32
Number of Processors

0

500

1000

1500

2000

2500
E

xe
cu

tio
n

tim
e

(s
ec

. p
er

 it
er

at
io

n)

BCSSTK30
Codes Comparison

Sparse MxV (Craft)
Dense Opertns. (Craft)

Sparse MxV (BRS-F77)
Dense Opertns. (BRS-F77)

Sparse MxV (BRS-C)
Dense Opertns. (BRS-C)

1 2 4 8 16 32
Number of Processors

0

400

800

1200

E
xe

cu
tio

n
tim

e
(s

ec
. p

er
 it

er
at

io
n)

PSMIGR1
Codes Comparison

Sparse MxV (Craft)
Dense Opertns. (Craft)

Sparse MxV (BRS-F77)
Dense Opertns. (BRS-F77)

Sparse MxV (BRS-C)
Dense Opertns. (BRS-C)

�a� �b�

Figure � Complete iteration execution time for the Craft �CYCLIC distribution�� Fortran
and C �BRS distribution� parallel CG codes� using the �a� BCSSTK�� �quite sparse� and

the �b� PSMIGR
 �rather dense� Harwell�Boeing matrices

easily in an e�cient way�

In order to save memory overhead and increase cache performance we can
replace linked lists by packed vectors� as the second parallel code do� Now
the coe�cient matrix is distributed following the BCS scheme and the sparse
local matrices are stored in the implicit CCS format� In the right�looking LU
�ll�in a�ects to the whole reduced matrix� which may imply a major data
movement process� To deal with this phenomenon we can resort to a garbage
collection operation� We are also forced to minimize the number of row and
column permutations during the factorization stage� To accomplish this� the
stage where the appropiate row and column permutations �required for the
selection of the pivot elements� are chosen is carried out separately from the
factorization stage itself �updating of the reduced matrix�� For the �rst of
these stages the MA�	AD routine �� �included in the MA� software package�
is used in its original form �that is� it is executed not parallelized in only one
processor before the factorization stage��

As the sparsity rate of the matrix decreases during factorization� a switch
to a dense LU is advantageous at some point� The iteration beyond which a
switch to a dense code takes place is decided in the pivoting stage� This dense
code is based on Level � �or � if a block cyclic distribution is used� BLAS�
and includes numerical partial pivoting in order to assure numerical stability�
Once the sparse computations are �nalized the reduced submatrix is scattered
to a dense array �that is� the dense submatrix appers distributed in a regular
cyclic manner�� This way� the overhead of the switch process is negligible�

��

1 4 16 64
Number of Processors

.154

.38

.96

2.4

6

15

38

95

240
E

xe
cu

tio
n

T
im

e
in

 s
ec

. (
lo

g)

PVM LU (Linked Lists)

STEAM2
JPWH991
SHERMAN1
SHERMAN2
LNS3937

1 4 16 64
Number of Processors

.154

.38

.96

2.4

6

15

38

95

240

E
xe

cu
tio

n
T

im
e

(s
ec

.)

SHMEM LU (CCS)

STEAM2
JPWH991
SHERMAN1
SHERMAN2
LNS3937

�a� �b�

Figure � Parallel sparse LU execution times using �a� doubly linked lists and Cray T�D
PVM� and �b� CCS distribution and Cray T�D SHMEM

The parallel execution times for the presently described implementation of the
BCS�based LU factorization is showed in Fig� � �b�� We can observe that this
implementation is more scalable than the PVM one�

� Conclusions

Current data�parallel language and compiler technology is not able to obtain
outstanding performance from many scienti�c and engineering applications
because they contain irregular code� mainly characterized by the presence of
array indirections for data access�

Through this paper we have tried to show that it is needed and possible
to design data distributions and structures specially suitable for parallelizing
e�ciently such programs� In particular� we have analyzed these two aspects
in the framework of solving systems of linear equations using iterative and
direct methods� We have showed that the use of pseudo�regular data distri�
butions� such as BRS or BCS� allows us both to exploit data locality and to
localize easily nonlocal data� This way communication overhead is limited and
performance is improved�

In addition� we have discussed techniques to handle in an e�cient way
the �ll�in and pivoting problems� appearing in some direct solvers� They are
very hard to deal with because the use of compressed formats to store sparse
matrices� We have implemented parallel versions of codes with such problems�
such as LU� using dynamic data structures for storing the local sparse matrices�
as doubly linked lists� Also the same problems were addressed considering

��

directly compressed formats �packed vectors� in order to save memory and to
improve cache e�ciency�

Current work on these techniques is aimed to implement these optimiza�
tions on a data�parallel compiler� Speci�cally� we are developing a run�time
library� called DDLY �� �Data Distribution Layer�� with a set of routines to
manage all this functionality� and to be called from the output code generated
for such a compiler�

Acknowledgments

We gratefully thank Ian Du� and all members in the parallel algorithm team
at CERFACS� Toulouse �France�� for their kindly help and collaboration� We
also thank the Ecole Polytechnique Federale de Lausanne� Switzerland� and
the Edinburgh Parallel Computing Centre� UK� for giving us access to the
Cray T�D multiprocessor�

This work was supported by the Ministry of Education and Science �CI�
CYT� of Spain under project TIC��������C	��	� and by the Human Capital
and Mobility programmeof the European Union under project ERB	�	P������	
and by the Training and Research on Advanced Computing Systems �TRACS�
at the Edinburgh Parallel Computing Centre �EPCC��

References

�� R� Asenjo� L�F� Romero� M� Ujald�on and E�L� Zapata ������� �Sparse
Block and Cyclic Data Distributions for Matrix Computations�� in High
Performance Computing� Technology� Methods and Applications� J�J�
Dongarra� L� Grandinetti� G�R� Joubert and J� Kowalik� eds�� Elsevier
Science B�V�� The Netherlands� pp� ��������

�� R� Asenjo and E�L� Zapata ������� �Sparse LU Factorization on the Cray
T�D�� Int�l� Symp� on High Performance Computing and Networking
�HPCN	� Milan� Italy� pp� ��	���� �Springer�Verlag� LNCS �����

�� R� Barriuso and A� Knies ������ �SHMEM User�s Guide for Fortran�
Rev� ����� Cray Research� Inc�

� R� Barriuso and A� Knies ������ �SHMEM User�s Guide for C� Rev�
����� Cray Research� Inc�

�� M�J� Berger and S�H� Bokhari ������� �A Partitioning Strategy for
NonUniformProblems on Multiprocessors�� IEEE Trans� on Computers�
�� ���� ��	���	�

�� R� Barret� M� Berry� T� Chan� J� Demmel� J� Donato� J� Dongarra� V�
Eijkhout� R� Pozo� C� Romine and H� van der Vorst ������Templates for

�

the Solution of Linear Systems� Building Blocks for Iterative Methods�
Siam Press�

�� �Basic Linear Algebra Subprograms� A Quick Reference Guide�� Numer�
ical Algorithms Gr� Ltd�� Oak Ridge National Lab�� Univ� of Tennessee�

�� J�J� Dongarra� I�S� Du�� D�C� Sorensen and H�A� van der Vorst �������
Solving Linear Systems on Vector and Shared Memory Computers� Siam
Press�

�� I�S� Du�� A�M� Erisman and J�K� Reid ������� Direct Methods for Sparse
Matrices� Oxford University Press� NY�

�	� I�S� Du�� R�G� Grimes and J�G� Lewis ������� �Users� Guide for the
Harwell�Boeing Sparse Matrix Collection�� Research and Technology
Div�� Boeing Computer Services� Seattle� WA�

��� I�S� Du� and J�K� Reid ������� �The Design of MA�� A Code for the
Direct Solution of Sparse Unsymmetric Linear Systems of Equations��
ACM Trans� on Mathematical Software� ������ ��������

��� G� Fox� S� Hiranandani� K� Kennedy� C� Koelbel� U� Kremer� C�W� Tseng
and M� Wu ����	�� �Fortran D Language Speci�cation�� Tech� Report
COMP TR�	���� Computer Science Dept�� Rice University� TX�

��� G�H� Golub and C�F� van Loan �������Matrix Computations� The Johns
Hopkins University Press� MD�

�� High Performance Fortran Forum ������� �High Performance Fortran
Language Speci�cation� Ver� ��	�� Scienti
c Programming� � ������ ��
��	�

��� High Performance Fortran Forum ������� �High Performance Fortran
Language Speci�cation� Ver� ��	��

��� H�M� Markowitz ������� �The Elimination Form of the Inverse and its
Application to Linear Programming��Management Science� �� ��������

��� D�M� Pase� T� MacDonald and A� Meltzer ������ �The CRAFT Fortran
Programming Model�� Scienti
c Programming� �� ��������

��� L�F� Romero and E�L� Zapata ������� �Data Distributions for Sparse
Matrix Vector Multiplication�� Parallel Computing� ��� �����	��

��� G�P� Trabado and E�L� Zapata ������� �Exploiting Locality on Parallel
Sparse Matrix Computations�� �rd� Euromicro Worksh� on Parallel and
Distributed Processing� San Remo� Italy� pp� ����

�	� D�M� Young ������� Iterative Solution of Large Linear Systems� Aca�
demic Press� NY�

��� H� Zima� P� Brezany� B� Chapman� P� Mehrotra and A� Schwald �������
�Vienna Fortran � A Language Speci�cation�� Tech� Report ACPC�
TR���� Austrian Center for Parallel Computation� Univ� of Vienna�
Austria�

��

