
Analyzing Data Structures for
Parallel Sparse Direct Solvers: Pivoting and Fill-in

J. Tourino
R. Doallo
R. Asenjo
O. Plata
E.L. Zapata

December 1996
Technical Report No: UMA-DAC-96/30

Published in:
Sixth Workshop on Compilers for Parallel Computers
Aachen, Germany, December 11-13, 1996, pp. 151-168

University of Malaga
Department of Computer Architecture
C. Tecnologico • PO Box 4114 • E-29080 Malaga • Spain

Analyzing Data Structures for Parallel Sparse Direct Solvers�

Pivoting and Fill�In �

J� Touri�no R� Doallo

Dept� Electronics and Systems
University of La Coru�na� Spain
email� fjuan�doallog�udc�es

R� Asenjo O� Plata E�L� Zapata

Dept� Computer Architecture
University of M�alaga� Spain

email� fasenjo�oscar�ezapatag�ac�uma�es

Abstract

This paper addresses the problem of the parallelization of sparse direct methods for
the solution of linear systems in distributed memorymultiprocessors� Sparse direct solvers
include pivoting operations and su�er from �ll�in� problems that turn the e�cient par�
allelization into a challenging task� We present some data structures to store the sparse
matrices that permit to deal in a e�cient way with both problems� These data structures
have been evaluated on a Cray T�D� implementing� in particular� LU and QR factoriza�
tions as examples of direct solvers� Any of the data representations considered enforces
the handling of indirections for data accesses� pointer referencing and dynamic data cre�
ation� All of these elements go beyond current data�parallel compilation technology� Our
solution is to propose new extensions to HPF that permit to deal with these codes� and
to support part of the new capabilities on a runtime library at the compiler level�

� Introduction

The solution of systems of linear equations� Ax � b� where A is a large sparse matrix� plays
a basic role in many �elds of science and engineering� There are two di�erent approaches to
solve such systems� direct and iterative methods� In direct methods 	
��	

�	
��� the system is
converted into an equivalent one whose solution is easier to determine by applying a number
of elementary row and�or column operations to the matrix A� A di�erent approach is taken
in iterative methods 	��	���	
��� where the number of operations required is not known in
advance�

In this paper we will focus on two of the most important direct methods� LU and QR
factorizations 	

�� LU factorization is used for the conversion of a general system of linear
equations to triangular form via Gauss transformations� The QR decomposition has vari�
ous other applications in linear algebra� such as solving least squares problems� eigenvalue

�The work described in this paper was supported by the Ministry of Education and Science �CICYT� of
Spain under project TIC��������C�	��� and by the Human Capital and Mobility programme of the European
Union under project ERB
���P������� and by the Training and Research on Advanced Computing Systems
�TRACS� at the Edinburgh Parallel Computing Centre �EPCC�

problems� coordinate transformations and projections problems� All this kind of computa�
tions appears in many scienti�c areas� such as �uid dynamics� structural analysis� circuit
simulation� device simulation and quantum chemistry� among many others�

Over the last decades� there have been major research e�orts in developing e�cient parallel
numerical codes� emerging the data�parallel paradigm as one of the most successful program�
ming models to reach the above objective� As a result� during the last few years� a number of
high�level data�parallel languages have been designed� such as Vienna�Fortran 	���� Fortran
D 	
��� High�Performance Fortran �HPF� 	
�� and Craft 	����

All these languages had initially focused in regular computations� that is� well�structured
codes that can be e�ciently parallelized at compile�time using simple data distributions�
However� the current constructs included in these languages lead to a low e�ciency when
they are applied to irregular codes� such as sparse computations� appearing in the majority
of real scienti�c and engineering applications� In order to help solving this problem we have
developed and extensively tested a number of pseudo�regular data distributions� designed as
natural extensions of the regular data distributions 	
� 	�� 	�� 	�� 	��� 	�
� 	��� 	���� The aim
of these distributions is their simplicity to be incorporated to a data�parallel language and
be used by a programmer� together with their e�ectiveness to obtain high e�ciencies from
the parallelization of irregular codes� Other important aspect that may in�uence the parallel
e�ciency is how the partitioned data is stored in the local memories of the processors� In this
paper we will discuss all these related issues in the scene of sparse direct methods� speci�cally
LU and QR decompositions� Special attention will be given to the e�cient solution of the
�ll�in problem and the pivoting operation�

The rest of the paper is organized as follows� In Section � we discuss the sparse direct
methods� in particular the LU and QR factorizations� In Section � we describe and discuss
the data structures we have designed to implement e�ciently the factorization codes� The
pseudo�regular data distributions we propose� speci�cally for the e�cient parallelization of
sparse direct methods are introduced in Section �� The parallelization strategy of such direct
methods� LU and QR factorizations� are presented in Section
� together with some experimen�
tal results comparing di�erent data structures and distributions� Based on the experimental
results obtained� we propose in Section � new extensions to the HPF data�parallel language
for solving e�ciently the main issues which appear during the computation of sparse direct
methods� Finally� Section � presents concluding remarks�

� Sparse Direct Methods

��� QR Factorization

The QR factorization of am�by�n matrixA is given by A � QR� where Q ism�by�n orthogonal
matrix �that is QT � Q��� and R is a n�by�n upper triangular matrix� The QR computation
can be arranged in several ways� such as methods based on Householder re�ections and Givens
rotations� The Gram�Schmidt orthogonalization process and� particularly� the more numerical
stable variant called Modi�ed Gram�Schmidt �MGS� is the method considered here�

The MGS algorithm is a rearrangement of the Classical Gram�Schmidt algorithm with
better numerical properties� Figure
 shows an in�place algorithm that includes column piv�
oting in order to deal with rank de�ciency problems �rank�A� � n� and to provide numerical
stability� Basically� the MGS algorithm is an iterative procedure of up to n iterations� In
each iteration k a pivot column is identi�ed and swapped for the current column k in both

rank � n�
do j � �
 n

norm�j� �

mX
i��

A�i� j� �A�i� j�

enddo
do k � �
 n

Find p with k � p � n so norm�p� � max
k�j�n

norm�j�

if �norm�p� � ��
rank � k� �� break

else
swap A�� � m�k� and A�� �m�p�
swap R�� � n� k� and R�� � n� p�
swap norm�k� and norm�p�

endif

R�k� k� �
p

norm�k�
A�� �m�k� � A�� �m�k��R�k� k�
do j � k � �
 n

R�k� j� �

mX
i��

A�i� k�A�i� j�

norm�j� � norm�j� �R�k� j�R�k� j�
A�� � m� j� � A�� �m� j��A�� �m�k�R�k� j�

enddo
enddo

Figure
� Modi�ed Gram�Schmidt �MGS� algorithm

matrices Q �that is A� and R� Afterwards all the j columns� k � j � n� of Q are updated
and the k row of R is computed� Once the algorithm has �nished� what we really obtain is a
A� � QR factorization due to the pivoting operation carried out�

Considering that A is a sparse matrix� we have taken special actions during the pivoting
operation in order to reduce the �ll�in problem in the MGS algorithm and to ensure numerical
stability� A simple strategy is based on the selection of a column with the maximum norm �the
one considered in Figure
�� but we have also experimented with a more elaborated pivoting
criterion� where columns with few nonzero elements are the only eligible columns to be the
pivot 	��� This way the �ll�in in R and Q is reduced�

Figure � presents� in a graphical way� the data accesses �dependences� and �ows for the
three main operations in the MGS code� pivoting �column swapping�� columns �Q� and row
�R� updating and �ll�in� An e�cient parallel implementation of the �rst two operations
requires fast accesses to data by columns� This fact strongly determines the data structures
we should use for storing the sparse matrices� as well as the method chosen to distribute these
matrices among the local memories of the multiprocessor� Moreover we should consider some
dynamic mechanism at the data structure level in order to deal with the �ll�in e�ciently� All
these issues will be discussed in the next Section�

��� LU Factorization

The LU factorization of a n�by�n matrix A produces a couple of n�by�n matrices� L �lower
triangular� and U �upper triangular�� and the n�by�n permutation matrices � and �� such
that �A� � LU � There are di�erent strategies to deal with the LU factorization of generic

Q

k p

k

R

k p

k

Pivoting

Q

k

k

R

k

k

Updating

�a� �b�

Q R
R(k,j)

Q(i,k)

k j j

k

i

Q(i,j)=Q(i,j) - Q(i,k)R(k,j)

Fill-in

�c�

Figure �� Pivot �a�� update �b� and �ll�in operations �c� of matrices Q and R in MGS

sparse matrices 	��� Some of the options are based on supernodal or multifrontal approaches�
in which arithmetic is performed on dense submatrices 	�� �level � or � BLAS can be used��
A third approach� the one considered in this paper� may consist in selecting some generic
methods� such as left�looking or right�looking LU�

The left�looking strategy� also known as column�based �row�based� method and imple�
mented for instance in the MA�� routine 	

�� updates in the k�th iteration the k�th column
�of L and U� starting from the k �
 previously updated columns� This is accomplished by
two di�erent steps for each iteration� a symbolic factorization and a numerical factorization�
In the �rst step� the nonzero structure of the current column is predicted� The second step
performs the arithmetic operations strictly needed� using the information gathered by the
symbolic factorization� The right�looking LU� also called submatrix�based method� performs
a total of n iterations� In the k�th iteration a pivot is chosen� a column and a row permutations
may be performed so that the pivot occupies the �k� k� position� and� �nally� the submatrix
de�ned by the pivot is updated �that is� elements �k �
 � n� k � n���

Any of the above methods can complete the resolution of the linear system of equations
following four stages� reordering� analyze� factorize and solve� The �rst step realigns the
matrix with the aim of reducing the complexity of the subsequent processing stages� The
analyze stage chooses the appropriate row and column permutations �� and ��� required for
the selection of the pivot elements� These pivots must be chosen such that the sparsity rate is
preserved �applying� for example� the Markowitz criterion 	
���� and the numerical stability is
guaranteed �choosing those pivots greater than a certain threshold value�� Afterwards� in the
factorize stage� the factorization �A� � LU is performed� This may be the most consuming�
time stage� since it performs the update operations for �oating�point numbers� Finally� in the
solve stage� the above factorization is use to solve the equation Ax � b or ATx � b �

From a parallel implementation point of view� the left�looking organization does not let us
to exploit as much parallelism as in the right�looking strategy 	��� as in the �rst one a column is

Initialize � and � to the n�by�n identity matrix
Initialize R and C
do k � �
 n� �

Find pivot p � ��� �� �Markowitz criterion�
Swap A�k�� � n� and A��� � � n�
Swap A�� � n� k� and A�� � n� ��
Swap R�k� and R���
Swap C�k� and C���
Swap ��k�� � n� and ���� � � n�
Swap ��� � n� k� and ��� � n� ��
A�k � � � n� k� � A�k � � � n� k��A�k� k�
do j � k� �
 n

A�k� � � n� j� � A�k � � � n� j�� A�k� � � n� k��A�k� j�
enddo
Update R and C nonzero counts

enddo

Figure �� Outline for the right�looking LU factorization algorithm� where the analyze and
factorize stages appear joined together

updated in each iteration� while in the second one a complete submatrix is updated� Moreover�
an additional overhead arises from the parallelization of the depth��rst search in the symbolic
factorization�

The submatrix�based �right�looking� approach presents two sources of parallelism we can
exploit� as can be derived from the the pseudo�code of Figure �� The algorithm performs a
number of iterations� each of them involving a pivot search in the reduced matrix �de�ned as
the �n� k��by��n� k� submatrix of A� such that k � i� j � n� in the k�th iteration�� followed
by a row and a column swapping� and an update of range one in the same reduced matrix� In
this code the Markowitz�s heuristic was chosen for �nding the pivot element� which is based
on the minimization of the Mij � �Ri �
��Cj �
� parameter� where Ri �Cj� counts for the
number of nonzero elements in the i�th row �j�th column��

The �rst source of parallelism in the above code corresponds to the loops in charge of
updating of the reduced matrix� The second source of parallelism comes from the sparse
nature of A� In many cases it is possible to merge several updates of range one in only one
update process of multiple range �say� s�� by modifying the Markowitz strategy in such a way
that we search for a pivot set containing s compatible pivots� instead of only one pivot element�
A couple of pivots� Aij and Akl� are said compatibles �and independent� if Ail � Akj � ��

The data �ows and accesses for the right�looking LU code is shown in Figure �� for the piv�
oting �row�column swapping� and sub�matrix updating operations� as well as �ll�in� Observe
that for an e�cient parallel LU algorithm fast accesses to data by both rows and columns are
required� Therefore we need to use more complex data structures than for the MGS algorithm�

� Data Structures for Sparse Direct Methods

Direct methods� speci�cally LU and QR factorizations� decompose the original sparse matrix
A by using simple row and�or column operations� When implementing these methods on a
distributed�memory multiprocessor we should distribute the data across the local memories
in such a way that workload balance and limited communication overhead is assured� Such

L

U

i

k

k j

Pivoting

L

k

k

U

Updating Fill-in

k j

k

i

U

L
A(i,j)=A(i,j) - A(i,k)A(k,j)

�a� �b� �c�

Figure �� Pivot �a�� update �b� and �ll�in operations �c� of matrices L and U in LU

data distributions are discussed in the next Section�

Once the local sparse matrices are obtained� we can select a number of data structures
to store them� Typically� in order to save memory �and computations�� zero elements of the
sparse matrices are not stored� There are many methods for storing the nonzero elements of
the matrices 	��� Here we will only discuss the Compressed Row and Column Storages �CRS
and CCS�� The CRS format represents a sparse matrix A as a set of three vectors �DATA� COL
and ROW�� DATA stores the nonzero values of A� as they are traversed in a row�wise fashion�
COL stores the column indices of the elements in DATA� and ROW stores the locations in DATA

that start a row� By convention� we store in the position n�� of ROW �n is the number of rows
of A� the number of nonzero elements of A plus one� The CCS format is identical to the CRS
format except that the columns of A are traversed instead of the rows�

We can simply take some sort of packed vector format 	
�� �such as CRS or CCS�� or use
some other more complex and �exible data structure for storing the local sparse matrices� We
have experimented with linked lists� pure CRS and CCS compressed formats and some mixed
structure� depending on the type of data accesses we have to deal with�

In a MGS factorization of a sparse matrix only e�cient accesses by matrix columns are
needed �see Figure ��� This fact implies large memory and computation savings because we
can use simple packed vectors �CCS� for instance� or one�dimensional doubly linked lists to
store the local sparse matrices� As we can see in Figure
 �b� each linked list represents one
column of the local sparse matrix where its nonzero elements are arranged in growing order
of the row index� Each item of the list stores the row index� the matrix element and two
pointers� A simpli�cation of the linked list is showed in Figure
 �a�� where the columns
are stored as packed vectors and they are referenced by means of an array of pointers� The
packed vectors do not have pointers inside and� therefore� this mixed structure requires only
almost half as much memory space as the doubly linked list �considering the fact that in the
C compiler of the Cray T�D� for example� the int as well as the double types take up � bytes
both�� Note that the data structure shown in Figure
 �a� is a variant of the CCS compressed
format� where the DATA and ROW vectors are joined together and the COL vector is represented
as an array of pointers� with the size of the corresponding column associated with each one�

In a LU decomposition� on the other hand� we require a data structure such as a two�
dimensional doubly linked list �see Figure
 �c�� in order to make e�cient data accesses both
by rows and by columns �see Figure ��� Each item in such a dynamic structure stores not
only the value and the local row and column indices� but also pointers to the previous and
next nonzero element in its row and column �four pointers in total��

1
a

3
d

5
f

2
b

3
e

5
g

2
c

5
h

cols
size: 3size size: 1 size: 2 size: 2 size: 0

1
a

2
b

3
e

2
c

3
d

5
f

5
g

5
h

cols

�a� �b�

1 1
a

2 2
b

2 4
c

3 3
e

3 1
d

5 1
f

5 3
g

5 4
h

rows
cols

�
BBBB�

a � � � �
� b � c �
d � e � �
� � � � �
f � g h �

�
CCCCA

�c� �d�

Figure
� Packed vectors and linked lists as e�cient data structures for direct methods� �a�
Packed vectors� �b� one�dimensional doubly linked list� �c� two�dimensional doubly linked list�
�d� local sparse matrix

From the point of view of an e�cient computation� packed vectors are very compact and
allow fast accesses by rows and columns to the matrix elements �but not both at the same
time�� Linked lists are specially useful when more �exible accesses to the matrix elements
�by rows and columns simultaneously� are needed� Additionally� there are two critical issues
to be taken into account when factorizing a sparse matrix using a direct method� pivoting
operations and �ll�in�

Doubly linked lists make easy the insertion and deletion operations and� hence� we can
deal with the �ll�in and pivoting problems in a e�cient way� In the case of using packed
vectors� the �ll�in problem is more di�cult to solve� For a MGS code� for instance� we have
followed this procedure� an auxiliary bu�er �which is also a packed vector� long enough to
store one column is allocated� During the updating process of a column� each nonzero entry�
a previously existing one or a new one ��ll�in�� is stored in the auxiliary bu�er� instead of
in the original packed vector� This way� the new elements are just added to the bu�er� but
the zeroing of existing entries are discarded� After �nishing the column updating process�

Data Structure Algorithm In place Pivoting Fill�in Mem� Fragment�

Linked lists All yes yes yes high
Packed vectors All but
�w� pointers� Givens

no yes yes low

All but
CCS�CRS

Givens
no no yes no

Table
� Properties for the di�erent data structures

the bu�er contains the new packed column� Hence� this auxiliary bu�er is just reallocated to
a memory block of its exact size� becoming the new column of the sparse matrix� while the
memory space of the old column is freed� Packed vectors� such as CRS and CCS� have also
the inconvenience of not allowing the pivoting operation �column�row swapping� in a e�cient
way� This is the reason of using some mixed data structure� such as the one presented in
Figure
 �a�� Column pivoting is implemented just interchanging pointer values�

But linked lists have also severe drawbacks� The dynamic memory allocation for each new
element is time�consuming� and the list traversing even more� as well as they consume more
space memory than packed vectors� But one major problem is the memory fragmentation due
to allocation�deallocation of items� and spatial data locality loss �cache ine�ciency� during
traversing rows and columns due pivoting operations �pivoting does not move data� only
changes pointer references�� For these reasons we have made an e�ort to develop an e�cient
parallel MGS and right�looking LU factorization algorithms avoiding linked lists�

Table
 summarizes the discussed properties of the described data structures from the
point of view of their behaviour when using in parallel sparse direct methods codes� Linked
lists entry in this table corresponds to the structures shown in Figure
 �b� and �c�� whereas
packed vectors �w� pointers� corresponds to that of Figure
 �a�� The last entry is the standard
CCS and CRS compressed formats� All these structures were implemented for the parallel
right�looking LU and QR factorization� this last one using the MGS algorithm� Householder
re�ections and Givens rotations �the parallel implementation of the last two methods are
described in 	
�� and 	�����

In any case� the use of data structures such as packed vectors implies the appearing of
code segments like

DO i � a� b

vu�row�i�� � vp�i�

ENDDO
and

init � c

DO i � a� b

IF �vu�i� �NE� ���� THEN

vp�init� � vu�i�

row�init� � i

init � init � �

ENDIF

ENDDO

The �rst piece of code is used to convert a packed vector to an unpacked one� and has
an assignment statement with indirections at the left�hand side� The second construct is the
reverse operation� used to pack the elements of a sparse vector� In this case we have a loop
containing an induction variable� In general� the current data�parallel compilers �such as the
T�D�Craft compiler� fail when compiling these kind of constructs� In the �rst case because
the contents of row�� is unkown until runtime and the compiler simply assume dependencies
across iterations� In the second piece of code� the increment of the induction variable is
included into a conditional statement�

�
BBBBBBBBB�

� �� � � � � � �

� � � � � � �� �

�� � � � � � � ��

� � � � � �� � �

� � � �� � � � �

� � � � �� � � �

� � � � � � �� �

� � � � �� � � ��

� �� �� � �� � � �

�� � � �� � � �� �

�
CCCCCCCCCA

�
BBBBBBBBBBBBBB�

� �� � � � � � �

� � � � � � �� �

�� � � � � � � ��

� � � � � �� � �

� � � �� � � � �

� � � � �� � � �

� � � � � � �� �

� � � � �� � � ��

� �� �� � �� � � �

�� � � �� � � �� �

�
CCCCCCCCCCCCCCA

DATA COL ROW

�� � �

�� � �

�� � �

�� � �

�

�

�a� �b� �c�

Figure �� �a� A sparse matrix� �b� The BRS partitioning of the sparse matrix for a ���
processor mesh� where the data elements for processor � are underlined� �c� The compressed
local submatrix for processor �

� Pseudo�Regular Sparse Data Distributions

Current data�parallel languages� such as HPF� Vienna Fortran or Craft� include the most
useful and simple schemes for distributing data across the processors� speci�cally block� cyclic
and a combination of both� All these distributions allow us to parallelize in a e�cient way
most Fortran codes with regular accesses to data� However� this is not true for applications
with irregular patterns for accessing data� These programs contain array indirections that
produce not well�balanced parallel codes and�or with complex communication patterns when
using regular data distributions�

Consider� for instance� applications that process data organized as sparse matrices� The
use of compressed formats for storing sparse matrices implies the appearing of array indirec�
tions in the code� Our approach to deal with this kind of data accesses is to de�ne pseudo�
regular data distributions as extensions of the classical block and cyclic regular distributions�
such as MRD �Multiple Recursive Decomposition� and BRS �Block Row Scatter� or BCS
�Block Column Scatter� 	���	
�� Let us concentrate on the last two data distributions� as they
are extensions of the regular cyclic distribution� one of the most successful data distribution
for matrix computations�

In our current situation� a sparse matrix is represented by a set of vectors �arrays�� depend�
ing on the compressed format considered �CRS or CCS� for example�� Instead of decomposing
these arrays separately� as in commonly done� we follow the approach of considering the sparse
matrix as a dense one� mapping this dense matrix on the processors using some standard data
distribution and� �nally� representing the local sparse matrices using the adopted compressed
format� In this way� BRS �BCS� uses a cyclic mapping of the matrix represented by its CRS
�CCS� format� as shown in �gure ��

An HPF�like description of the BRS data distribution may be as follows�

�HPF� SPARSE�CRS�DATA�COL�ROW�� �� A�N�N�

�HPF� DISTRIBUTE�CYCLIC�CYCLIC� ONTO MESH �� A

The SPARSE directive means that the sparse matrix A is actually represented in a CRS
format� using the arrays DATA� COL and ROW� The BRS distribution is a cyclic distribution of
the compressed representation of a sparse matrix� Stating CYCLIC in a DISTRIBUTE directive

Distribution SHL��� JPWH��� SHERMAN� MAHINDAS ORANI��� SHERMAN	

BCS � �� �� �� �	
 ���
CHAOS �� ��� �
	 ��� ���� ����

Table �� Execution times �in sec�� for MGS using BCS and CHAOS

Matrix Origin m� n
elem�A�

elem�A�

SHL
�� Linear programming problems ��	���	 ���� ��	��

JPWH��� Circuit physics modeling ������� ���� �����
MAHINDAS Economic modeling ��������� ���� ��
��
ORANI��� Economic modeling ��������� ����� ��
��

WELL���� Least squares problems in surveying �������� ���� �����
LNS	�	� Compressible �uid �ow 	�	��	�	� ��
�� �����
ORSREG� Oil reservoir simulation ��������� �
�		 �����

STEAM� Oil reservoir simulation ������� �	��� 	����
SHERMAN� Oil reservoir modeling ��������� 	��� ��	��
SHERMAN� Oil reservoir modeling ��������� �	��
 �����

SHERMAN� Oil reservoir modeling 		���		�� ����	 �����

Table �� Harwell�Boeing test matrices

is understood by the compiler as applying a BRS distribution to the DATA� COL and ROW arrays
declared in the SPARSE statement� This way we have the bene�ts of a cyclic data distribution
�load balancing and simple and limited communication patterns� applied to a sparse matrix
independently of the compressed format used to represent it�

As a test to compare our parallel solutions with others using the standard dense data
distributions� we made an experiment implementing the sparse algorithms using such distri�
butions and the CHAOS runtime library 	�
�� in order to deal with the irregular data accesses�
We have inserted routines from the CHAOS library 	��� to rebalance the load �and data� of the
parallel MGS algorithm� Basically� through these routines� we have generated a translation
table which assigns the global indices of matrix A to the di�erent processors by following an
irregular model� This table is distributed across the processors and is used by the routine
localize to translate the global indices into local indices within each processor� It also gener�
ates a communication schedule which is used to gather the o��processor data which are needed
during computation� and to scatter back local copies after computation� For the parallel al�
gorithm MGS� table � shows a comparison of the execution times using BCS pseudoregular
data distribution as opposed to the irregular distribution used in the CHAOS routines� The
execution times have been taken in a cluster of
� workstations Sun SPARCstation � with
�
�MHz microSPARC�II processors in a PVM message�passing environment� The test sparse
matrices were taken from the Harwell�Boeing suite and are described in table ��

The CHAOS approach has a large number of communications and high memory overhead�
as a consequence of accessing a large distributed data addressing table� This results in high
execution times� BCS �and BRS� distribution� on the other hand� is adequate for sparse matrix
problems �in particular� the MGS algorithm� because it exploits the data and computations
locality and minimizes the communications� It does not require neither additional storage
nor communications for addressing nonlocal data� as all the processors know where data are
allocated�

4

Iter. 1

Iter. 2

Iter. 3

Iter. 4

Begin

Ring buffer for Q columns Storage for R rows

321

4 32

43

4

1

1

1

1 2

2

2 3

3

4

Figure �� MGS�pv�SHMEM data structures� using BCS� for A and Q� BRS� for R� and packed
vectors for storing the local matrices

� Evaluating Data Structures and Distributions

��� Parallel Sparse MGS

We have designed three di�erent parallel implementations of the MGS algorithm of the Fig�
ure
� The parallelization procedure we have used is extensively explained in 	��� Here we will
focus in the performance evaluation of the parallel MGS algorithm in terms of the discussed
data structures and distributions� All the experimental results were obtained using a Cray
T�D multiprocessor 	���

A �rst parallel implementation is a simpli�cation of the considered MGS algorithm� The
pivoting process is discarded and the upper triangular R matrix is the only one calculated
�and the only needed in many codes that incorporate this kind of factorization�� In this
parallel version all the local sparse matrices are stored using packed vectors� Speci�cally� the
initial A matrix is stored by packed columns �CCS compressed format� in a bu�er� As R is
calculated row by row� each one is stored as a packed vector �CRS format� in other bu�er� As
we do not intend to preserve Q� the bu�er associated to A �and Q in the in�place algorithm�
operates as a ring bu�er� saving this way local memory in the processors�

Figure � shows an example for a A matrix with four columns� Each �lled block represents
a column for A �and Q� and a row for R� As we can see� in each k iteration� the last n��k�
�
columns of Q are updated� and the k row of R is calculated� Whenever the end of the ring
bu�er storing Q is reached� the new columns are stored from the beginning of such bu�er�
Note that we have to dimension the ring bu�er to a size long enough to preserve� during the
k iteration� the k column of Q until the updating of the last column of Q �see Figure
��

This parallel algorithm was coded in Fortran �� and the Cray T�D SHMEM 	
� native
shared�memory library was used for communication� With these routines we can minimize
the communication overhead at the expense of a very careful programming due to possible
synchronization and cache coherence problems� It only has three communication operations
per iteration �say� k�� a reduction for obtaining the norm of the k column� a broadcast of the
normalized k column to all processor columns of the mesh� and a reduction for calculating
the dot products �see Figure
�� The rest of computations are completely local� This re�
duced number of communications comes from the absence of the pivoting operation and the
resolution of the least squares problem� Figure � presents the parallel execution times for
several processor meshes and Harwell�Boeing sparse matrices� We can see that� in general�
the parallel e�ciency is near optimal �in some cases we have superlinearity�� A very low

1 4 16 64
Number of Processors

6

15

38

95

240

600

1500

3750

E
xe

cu
tio

n
T

im
e

in
 s

ec
. (

lo
g)

MGS−CCS/CRS−SHMEM

 MAHINDAS
 ORSREG1
 SHERMAN5

1 4 16 64
Number of Processors

.96

2.4

6

15

38

95

240

E
xe

cu
tio

n
T

im
e

in
 s

ec
. (

lo
g)

MGS−CCS/CRS−SHMEM

 JPWH991
 SHERMAN1
 WELL1850

Figure �� MGS execution times for di�erent mesh sizes and Harwell�Boeing sparse matrices�
using packed vectors �CCS and CRS� and Cray T�D SHMEM

1 4 16 64
Number of Processors

6

15

38

95

240

600

E
xe

cu
tio

n
T

im
e

in
 s

ec
. (

lo
g)

MGS-1ll-PVM

 JPWH991
 ORANI678
 SHERMAN5

1 4 16 64
Number of Processors

6

15

38

95

240

600

E
xe

cu
tio

n
T

im
e

in
 s

ec
. (

lo
g)

MGS−pv−PVM

 JPWH991
 ORANI678
 SHERMAN5

�a� �b�

Figure �� Parallel sparse MGS execution times for di�erent mesh sizes and Harwell�Boeing
sparse matrices� using linked lists �a� or packed vectors �b�� and Cray T�D PVM

communication overhead �small number of communications and very e�cient due to the use
of SHMEM routines� and very high spatial locality exploitation �packed vectors allow us to
avoid the use of pointers and dynamic memory allocations� justify this behaviour�

Two more parallel implementations of the complete MGS algorithm �including pivoting�
were designed using the one�dimensional doubly linked list and the packed vectors shown in
Figure
 �b� and �a�� respectively� for storing the local sparse matrices� Both versions were
coded in C and using PVM routines for message�passing� In order to reduce the communi�
cation overhead the low�latency communication functions pvm fastsend and pvm fastrecv

�non�standard PVM routines� were used for messages of length less than �
� bytes� E�cient
custom reduction operations suitable for the algorithm were also developed� Figure � shows
the parallel execution times obtained for di�erent processor mesh sizes and Harwell�Boeing
sparse matrices �see Table �� for both implementations� The execution times include the QR

1 4 16 64
Number of Processors

.1536

.38

.96

2.4

6

15

38

95

240

E
xe

cu
tio

n
T

im
e

in
 s

ec
. (

lo
g)

LU-2ll-PVM

 STEAM2
 JPWH991
 SHERMAN1
 SHERMAN2
 LNS3937

1 4 16 64
Number of Processors

.1536

.38

.96

2.4

6

15

38

95

240

E
xe

cu
tio

n
T

im
e

in
 s

ec
. (

lo
g)

LU-CCS-SHMEM

 STEAM2
 JPWH991
 SHERMAN1
 SHERMAN2
 LNS3937

�a� �b�

Figure
�� Parallel sparse LU execution times for di�erent mesh sizes and Harwell�Boeing
sparse matrices� using linked lists and Cray T�D PVM �a�� and packed vectors �CCS� and
Cray T�D SHMEM �b�

factorization as well as the solving of the least squares problem� The time required for data
distribution and collection is not included because we assume that these algorithms are sub�
problems within wider programs� As we can see� the execution times are in correspondence
with the size of the input matrices� In the other hand� the dependence of the times with the
size of the machine is almost linear� that is� the speedup �or e�ciency� is very high� Compar�
ing both �gures it can be seen that the packed vectors based implementation is faster than
the one using linked lists�

��� Parallel Sparse LU

Two parallel implementations of the right�looking LU algorithm� based on doubly linked lists
and packed vectors� are described� Both parallel algorithms were designed using the same
environment as in the parallel MGS�

The �rst parallel algorithm is mapped on a mesh of P��P� processors using a BCS �sparse
cyclic� data distribution and a local representation with two�dimensional doubly linked lists�
Note that the use of linked lists is almost unavoidable in order to handle in an e�cient
way the pivoting operation �that is� row and column swapping�� This algorithm is extensively
described and evaluated in 	��� Figure
� �a� reproduces the parallel executions times obtained
on the Cray T�D� for di�erent mesh sizes and Harwell�Boeing sparse matrices �see Table �
for a description�� The parallel algorithm was coded in C and PVM routines were used for
message�passing �the Cray T�D speci�c low latency PVM functions were used as in the MGS��
There are some improvements to the linked list implementation developed by Jacko Koster
	
��� such as the reduction of the communications cost by an implicit pivoting together with
sporadic workload re�balancing phases�

On the other hand� in the parallel version based on packed vectors� the A matrix is
distributed following the BCS scheme and the sparse local matrices are stored in the implicit
CCS format� While in the left�looking LU the �ll�in only appears in the k column at each
iteration� in the right�looking LU the �ll�in a�ects to the whole reduced submatrix� This

�ll�in implies much more data movement than in the left�looking case� and also it could be
associated with a garbage collection operation� We are also forced to minimize the number of
row and column permutations during the factorization stage� To accomplish that the analyze

and factorize steps are carried out separately�� For the analyze stage the MA
�AD routine
	
�� �included in the MA�� software package� is used� but it has not been parallelized� it is
just executed in only one processor before the factorize stage�

As the sparsity rate of the matrix decreases during the factorization� a switch to a dense
LU factorization is advantageous at some point� The iteration beyond which a switch to dense
code takes place is decided in the analyze stage� Hence� a sparse factorization code is executed
initially� but when reaching the switch point a dense code continues the factorization� This
dense code is based on Level � �or � if a block cyclic distribution is used� BLAS� and includes
numerical partial pivoting in order to assure stability� Once the sparse computations are
carried out the reduced submatrix is scattered to a dense array� Therefore� the overhead of
the switch operations is negligible and the reduced dense submatrix appears distributed in a
regular cyclic manner�

Figure
� �b� presents the parallel execution times for the BCS�based right�looking LU
algorithm� This time the parallel algorithm was coded in Fortran �� and the Cray T�D
SHMEM 	
� native shared�memory library was used for communication� The factorization
numerical errors of our parallel algorithm are similar to those of the MA�� routine� and
they can be reduced by applying a previous scaling to the matrix� Besides� the �ll�in of our
algorithm is also similar to that of the MA�� �using the same threshold�� Nevertheless� the
sequential time of our new algorithm is signi�cantly higher than in the MA�� �very optimized��

� A Proposal for Extending HPF Capabilities

Current data�parallel languages �HPF� Fortran D� Vienna Fortran� Craft ���� do not provide
support to specify e�cient data distributions for sparse matrices� nor �exible data structures
for storing the local sparse matrices� However the distribution strategy of a sparse matrix
across the processors and the data structures used to store the corresponding local sparse
matrices are crucial decisions in order to obtain high parallel e�ciencies� As an example�
the experimental evaluation presented in the above section shows that we can obtain high
e�ciencies from parallel sparse direct methods codes just selecting carefully a suitable data
structure and distribution� Indeed in all our parallel sparse algorithms we have used our
pseudo�regular data distributions �speci�cally BRS and BCS and variants�� obtaining very
good speedups� None of them are included in the existing data�parallel languages�

It would be of major interest if we could incorporate to a current data�parallel language�
such as HPF� some sort of data structure declaration� as linked lists and packed vectors� but
without loosing the convenient matrix�like computation speci�cations� That is� if we could
use some e�cient data structure for storing the sparse matrices but with no need to deal with
the complexities of use it directly� Figure

 presents an example of such a speci�cation for
the MGS algorithm� The SPARSE directive is used to specify A as a sparse matrix that is stored
using a LLCS �Linked List Column Storage� data structure �the structure shown in Figure

�b��� That is� with this directive we establish an identi�cation between the matrix A and its
machine storage representation� From this point on� we can specify the computations using
matrix notations but with the con�dence that the compiler will translate these speci�cations

�Obviously we must incorporate in some way a numerical pivoting to the factorize stage
 only when the
chosen pivot may introduce numerical instability�

�HPF� PROCESSORS� DIMENSION����� �� MESH
PARAMETER �M��	
��
PARAMETER �N���
�
PARAMETER �ACCURACY����E�
��
INTEGER I� J� K� RANK� P
REAL PIVOT
REAL� DIMENSION�M� �� NORM� VSUM
REAL� DIMENSION�N� �� VCOL

�HPF� REAL SPARSE�LLCS��� �� A�M�N�
�HPF� REAL SPARSE�LLCS��� �� R�N�N�

�HPF� ALIGN VSUM����NORM��� WITH A�����
�HPF� ALIGN VCOL��� WITH A�����
�HPF� DISTRIBUTE�CYCLIC�CYCLIC� ONTO MESH �� A� R

RANK � N

�HPF� INDEPENDENT
DO J � �� N
NORM�J� � DOT�PRODUCT�A���J��A���J��

ENDDO

DO K � �� N
PIVOT � MAXVAL�NORM�K�N��

IF �PIVOT � ACCURACY� THEN
RANK � K��
EXIT

ELSE
P � MAXLOC�NORM�K�N��
SWAP�A���K��A���P��
SWAP�R���K��R���P��
NORM�P� � NORM�K�
NORM�K� � PIVOT

ENDIF

PIVOT � SQRT�PIVOT�
R�K�K� � PIVOT
A���K� � A���K��PIVOT
VCOL � UNPACK�A���K��

�HPF� INDEPENDENT
DO J � K��� N
R�K�J� � DOT�PRODUCT�VCOL� A���J��

ENDDO

VSUM�K���N� � UNPACK�R�K�K���N��

C Local computations �following the owner compute rule�
DO J � K��� N
NORM�J� � NORM�J� � VSUM�J� � VSUM�J�

�HPF� FILLIN IN A
DO I � �� M
A�I�J� � A�I�J� � VCOL�I� � VSUM�J�

ENDDO
ENDDO

ENDDO

Figure

� Outline for a HPF�like speci�cation of the parallel MGS algorithm

to computations using linked lists�

We have to take a special action to deal with the �ll�in problem� because the sparse
matrices are stored compressed� For instance� consider the inner loop I at the end of the code
in Figure

� By default� this loop runs only over the non�zero elements of a J column of A�
But for the column updating to be correct� the I loop must run over all the elements� zero
and non�zero� of A� because A�I�J� could be zero but not VCOL�I� � VSUM�J� ��ll�in�� We
have incorporated the �HPF� FILLIN IN A just before the I loop in order to declare this fact�
and change the normal behaviour of that loop�

In the proposed code� the meaning of some Fortran �� and HPF standard procedures and
functions should be extended� For instance� at the beginning of the code� the intrinsic F��
procedure DOT PRODUCT is used for computing the square of the norm of the j column of A� In

our case� that column is stored as a linked list and� therefore� this procedure should consider
this storage representation� DOT PRODUCT is also called later to compute the elements of the k
row of R ��rst inner loop�� In this case� its �rst argument is an array �VCOL� and the second
one is a linked list �j column of A�� There are also new procedures� SWAP�� and UNPACK���
The �rst one is used to swap two arrays� in our case� two columns �pivoting operation�� The
second one converts a packed vector to an unpacked one �with zeroes�� This second procedure
is a local operation �no communications� because the sparse matrices are distributed using
BCS� that is� a cyclic distribution as dense �unpacked� matrices� and then the local matrices
are compressed locally� at each processor�

As the �nal indirections for access pattern depend on the actual input data� part of the
analysis must be done during program execution� In order to support all this new functionality�
we are in the process of extending our run�time library DDLY �Data Distribution Layer� 	�
�
with a set of routines to handle linked lists� to be called from the output machine code
generated by a HPF compiler�

� Conclusions

One of the major reasons why data�parallel computation has not achieved outstanding results�
in terms of functionality and e�ciency� has been the development of very general programming
and compilation techniques without a deep orientation to real codes�

It is clear that sparse direct methods are complex computations� in such a way that the
current data�parallel technology does not have the elements to solve them e�ciently and in
an elegant manner� Two are the main di�cult issues� pivoting and �ll�in� Both are di�cult
to handle� time�consuming and with high memory overhead� because the matrices are stored
in a compressed format �that is� only nonzero elements are stored�� The more �exible way
to manage these problems implies the use of some sort of linked list data structure to store
the sparse matrices� Nowadays� there are no data�parallel tools with an e�cient handling of
this kind of data structures� and the cost of development for those strategies are still under
evaluation�

This paper has presented a possible solution to deal with these computations in a HPF
environment� The idea is to extend the HPF capabilities in such a way that the programmer
may not only specify a particular sparse data distribution but also a particular sparse data
storage representation� This way we establish an identi�cation of the array representation of a
sparse matrix at the programmer level and the storage representation �packed vectors� linked
lists� ���� at the compiler �machine� level� The programmer deals with convenient matrix
notations and the compiler translates them to machine code by using packed vectors and�or
linked lists handling routines �from the DDLY runtime library�� The results from our manual

parallel implementations of direct solvers �emulating the output of a HPF compiler� show that
we can obtain high e�ciencies using the above strategy�

Acknowledgements

We gratefully thank Iain Du� and all members in the parallel algorithm team at CERFACS�
Toulouse �France�� for their kindly help and collaboration� We also thank the Ecole Poly�
technique Federale de Lausanne� Switzerland� and the Edinburgh Parallel Computing Centre�
UK� for giving us access to the Cray T�D multiprocessor�

References

�	
 R� Asenjo� L�F� Romero� M� Ujald�on and E�L� Zapata �	

��� �Sparse Block and Cyclic Data
Distributions for Matrix Computations�� in High Performance Computing� Technology� Methods
and Applications� J�J� Dongarra� L� Grandinetti� G�R� Joubert and J� Kowalik� eds�� Elsevier
Science B�V�� The Netherlands� pp� ��
�����

��
 R� Asenjo� G�P� Trabado� M� Ujald�on and E�L� Zapata �	

��� �Compilation Issues for Irregular
Problems�� Works� on Parallel Programming Environments for High�Performance Computing�
L�Alpe d�Huez� France� pp� 	���	

�

��
 R� Asenjo and E�L� Zapata �	

��� �Sparse LU Factorization on the Cray T�D�� Int�l� Symp�
on High�Performance Computing and Networking �HPCN�� Milan� Italy� pp� �
���
� �Springer�
Verlag� LNCS
	
��

��
 R� Barret� M� Berry� T� Chan� J� Demmel� J� Donato� J� Dongarra� V� Eijkhout� R� Pozo� C�
Romine and H� van der Vorst �	

��� Templates for the Solution of Linear Systems� Building
Blocks for Iterative Methods� Siam Press�

��
 R� Barriuso� A� Knies �	

��� �SHMEM User�s Guide for Fortran� Rev� ����� Cray Research� Inc�

��
 Cray Research� Inc� �	

��� �Cray T�D� Technical Summary��

��
 R� Doallo� B�B� Fraguela� J� Touri�no and E�L� Zapata �	

��� �Parallel Sparse Modi�ed Gram�
Schmidt QR Decomposition�� Int�l� Symp� on High�Performance Computing and Networking
�HPCN�� Brussels� Belgium� pp� ������� �Springer�Verlag� LNCS 	�����

��
 J�J� Dongarra� I�S� Du�� D�C� Sorensen and H�A� van der Vorst �	

	�� Solving Linear Systems
on Vector and Shared Memory Computers� Siam Press�

�

 I�S� Du� �	

��� �Sparse Numerical Linear Algebra� Direct Methods and Preconditioning�� Tech�
Report RAL�TR�
������ Rutherford Appleton Lab�� UK �State of the Art in Numerical Analisys
Meeting� York��

�	�
 I�S� Du�� A�M� Erisman and J�K� Reid �	
���� Direct Methods for Sparse Matrices� Oxford Uni�
versity Press� NY�

�		
 I�S� Du� and J�K� Reid �	

��� �MA��� a Fortran Code for Direct Solution of Sparse Unsymmetric
Linear Systems of Equations�� Tech� Report RAL�
������ Rutherford Appleton Lab�� UK�

�	�
 I�S� Du� and J�K� Reid �	

��� �The Design of MA��� A Code for the Direct Solution of Sparse
Unsymmetric Linear Systems of Equations�� ACM Trans� on Mathematical Software� �� ���� 	���
����

�	�
 R� Doallo� J� Touri�no and E�L� Zapata �	

��� �Sparse Householder QR Factorization on a Mesh��
�th EUROMICRO Works� on Parallel and Distributed Processing� Braga� Portugal� pp� ����
�

�	�
 G� Fox� S� Hiranandani� K� Kennedy� C� Koelbel� U� Kremer� C�W� Tseng and M� Wu �	

���
�Fortran D Language Speci�cation�� Tech� Report COMP TR
��	�	� Computer Science Dept��
Rice University

�	�
 G�H� Golub and C�F� van Loan �	

	�� Matrix Computations� The Johns Hopkins University
Press� MD�

�	�
 High Performance Fortran Forum �	

��� �High Performance Language Speci�cation� Ver� 	����
Scienti�c Programming� � �	���� 	�	���

�	�
 J� Koster �	

��� �Parallel Solution of Sparse Systems of Linear Equations on a Mesh Network of
Transputers�� Tech� Report� Institute for Continuing Education� Eindhoven Univ� of Technology�
The Netherlands�

�	�
 J�M� Ortega and W�G� Poole �	
�	�� Numerical Methods for Di	erential Equations� Pitman Pub�
lishing� Marsh�eld� MS�

�	

 H�M� Markowitz �	
���� �The Elimination Form of the Inverse and its Application to Linear
Programming��Management Science� �� ������
�

���
 D�M� Pase� T� MacDonald and A� Meltzer �	

��� �The CRAFT Fortran Programming Model��
Scienti�c Programming� �� ��������

��	
 R� Ponnusamy� J� Saltz� A� Choudhary� S� Hwang and G� Fox �	

��� �Runtime Support And
Compilation Methods For User�Speci�ed Data Distributions�� IEEE Trans� on Parallel and Dis�
tributed Systems� � ���� �	����	�

���
 L�F� Romero and E�L� Zapata �	

��� �Data Distributions for Sparse Matrix Vector Multiplica�
tion�� Parallel Computing� �	� ��������

���
 J� Saltz� R� Ponnusamy� S� Sharma� B� Moon� Y� Hwang� M� Uysal and R� Das �	

��� �A Manual
for the CHAOS Runtime Library�� Tech� Report CS�TR����� and UMIACS�TR�
����� Computer
Science Dept�� University of Maryland�

���
 J� Touri�no� R� Doallo and E�L� Zapata �	

��� �Sparse Givens QR Factorization on a Multipro�
cessor��
nd� Int�l� Conf� on Massively Parallel Computing Systems� Ischia� Italy�

���
 G�P� Trabado and E�L� Zapata �	

��� �Exploiting Locality on Parallel Sparse Matrix Computa�
tions�� �rd EUROMICRO Works� on Parallel and Distributed Processing� San Remo� Italy� pp�
��
�

���
 M� Ujald�on� S� Sharma� E�L� Zapata and J� Saltz �	

��� �Experimental Evaluation of E�cient
Sparse Matrix Distributions�� �
th ACM Int�l� Conf� on Supercomputing� Philadelphia� PN� pp�
������

���
 M� Ujald�on� E�L� Zapata� B�M� Chapman and H�P� Zima �	

��� �New Data�Parallel Language
Features for Sparse Matrix Computations�� �th IEEE Int�l� Parallel Processing Symp� �IPPS�����
Santa Clara� CA� pp� ������
�

���
 D�M� Young �	
�	�� Iterative Solution of Large Linear Systems� Academic Press� NY�

��

 H� Zima� P� Brezany� B� Chapman� P� Mehrotra and A� Schwald �	

��� �Vienna Fortran � A Lan�
guage Speci�cation�� Tech� Report ACPC�TR
���� Austrian Center for Parallel Computation�
University of Vienna� Austria�

