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Abstract

This paper addresses the problem of the parallelization of sparse direct methods for
the solution of linear systems in distributed memory multiprocessors. Sparse direct solvers
include pivoting operations and suffer from fill-in, problems that turn the efficient par-
allelization into a challenging task. We present some data structures to store the sparse
matrices that permit to deal in a efficient way with both problems. These data structures
have been evaluated on a Cray T3D, implementing, in particular, LU and QR factoriza-
tions as examples of direct solvers. Any of the data representations considered enforces
the handling of indirections for data accesses, pointer referencing and dynamic data cre-
ation. All of these elements go beyond current data-parallel compilation technology. Our
solution is to propose new extensions to HPF that permit to deal with these codes, and
to support part of the new capabilities on a runtime library at the compiler level.

1 Introduction

The solution of systems of linear equations, Az = b, where A is a large sparse matrix, plays
a basic role in many fields of science and engineering. There are two different approaches to
solve such systems, direct and iterative methods. In direct methods [10][15][18], the system is
converted into an equivalent one whose solution is easier to determine by applying a number
of elementary row and/or column operations to the matrix A. A different approach is taken
in iterative methods [4][28][18], where the number of operations required is not known in
advance.

In this paper we will focus on two of the most important direct methods, LU and QR
factorizations [15]. LU factorization is used for the conversion of a general system of linear
equations to triangular form via Gauss transformations. The QR decomposition has vari-
ous other applications in linear algebra, such as solving least squares problems, eigenvalue
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problems, coordinate transformations and projections problems. All this kind of computa-
tions appears in many scientific areas, such as fluid dynamics, structural analysis, circuit
simulation, device simulation and quantum chemistry, among many others.

Over the last decades, there have been major research efforts in developing efficient parallel
numerical codes, emerging the data-parallel paradigm as one of the most successful program-
ming models to reach the above objective. As a result, during the last few years, a number of
high-level data-parallel languages have been designed, such as Vienna-Fortran [29], Fortran
D [14], High-Performance Fortran (HPF) [16] and Craft [20].

All these languages had initially focused in regular computations, that is, well-structured
codes that can be efficiently parallelized at compile-time using simple data distributions.
However, the current constructs included in these languages lead to a low efficiency when
they are applied to irregular codes, such as sparse computations, appearing in the majority
of real scientific and engineering applications. In order to help solving this problem we have
developed and extensively tested a number of pseudo-regular data distributions, designed as
natural extensions of the regular data distributions [1] [2] [3] [7] [22] [25] [26] [27]. The aim
of these distributions is their simplicity to be incorporated to a data-parallel language and
be used by a programmer, together with their effectiveness to obtain high efficiencies from
the parallelization of irregular codes. Other important aspect that may influence the parallel
efficiency is how the partitioned data is stored in the local memories of the processors. In this
paper we will discuss all these related issues in the scene of sparse direct methods, specifically
LU and QR decompositions. Special attention will be given to the efficient solution of the
fill-in problem and the pivoting operation.

The rest of the paper is organized as follows. In Section 2 we discuss the sparse direct
methods, in particular the LU and QR factorizations. In Section 3 we describe and discuss
the data structures we have designed to implement efficiently the factorization codes. The
pseudo-regular data distributions we propose, specifically for the efficient parallelization of
sparse direct methods are introduced in Section 4. The parallelization strategy of such direct
methods, LU and QR factorizations, are presented in Section 5, together with some experimen-
tal results comparing different data structures and distributions. Based on the experimental
results obtained, we propose in Section 6 new extensions to the HPF data-parallel language
for solving efficiently the main issues which appear during the computation of sparse direct
methods. Finally, Section 7 presents concluding remarks.

2 Sparse Direct Methods

2.1 QR Factorization

The QR factorization of a m-by-n matrix A is given by A = @R, where () is m-by-n orthogonal
matrix (that is Q7 = Q') and R is a n-by-n upper triangular matrix. The QR computation
can be arranged in several ways, such as methods based on Householder reflections and Givens

rotations. The Gram-Schmidt orthogonalization process and, particularly, the more numerical
stable variant called Modified Gram-Schmidt (MGS) is the method considered here.

The MGS algorithm is a rearrangement of the Classical Gram-Schmidt algorithm with
better numerical properties. Figure 1 shows an in-place algorithm that includes column piv-
oting in order to deal with rank deficiency problems (rank(A) < n) and to provide numerical
stability. Basically, the MGS algorithm is an iterative procedure of up to n iterations. In
each iteration k£ a pivot column is identified and swapped for the current column k& in both



rank = n;

do =1, n
norm(j)::j{:,4u;j)*,4u;j)
=1
enddo
do k=1,n

Find p with & < p < n so norm(p) = max norm(y)

k<j<n

if (norm(p) < ¢)

rank = k — 1; break
else

swap A(l:m,k) and A(1:m,p)

swap R(1:n,k) and R(1:n,p)

swap norm(k) and norm(p)
endif
R(k,k) = \/norm(k)
A(l:m,k)=A(:m,k)/R(k, k)
doj=k+1,n

R(k,j) = > _ A(i,k)A(i, 5)

norn(j) = norm(j) —R(k, j)R(k, j)
A(l:m,j)=A(1:m,j5) — A(l: m,k)R(k, j)
enddo
enddo

Figure 1: Modified Gram-Schmidt (MGS) algorithm

matrices () (that is A) and R. Afterwards all the j columns, £ < j < n, of ) are updated
and the k row of R is computed. Once the algorithm has finished, what we really obtain is a
All = QR factorization due to the pivoting operation carried out.

Considering that A is a sparse matrix, we have taken special actions during the pivoting
operation in order to reduce the fill-in problem in the MGS algorithm and to ensure numerical
stability. A simple strategy is based on the selection of a column with the maximum norm (the
one considered in Figure 1), but we have also experimented with a more elaborated pivoting

criterion, where columns with few nonzero elements are the only eligible columns to be the
pivot [7]. This way the fill-in in R and @ is reduced.

Figure 2 presents, in a graphical way, the data accesses (dependences) and flows for the
three main operations in the MGS code: pivoting (column swapping), columns (Q) and row
(R) updating and fill-in. An efficient parallel implementation of the first two operations
requires fast accesses to data by columns. This fact strongly determines the data structures
we should use for storing the sparse matrices, as well as the method chosen to distribute these
matrices among the local memories of the multiprocessor. Moreover we should consider some
dynamic mechanism at the data structure level in order to deal with the fill-in efficiently. All
these issues will be discussed in the next Section.

2.2 LU Factorization

The LU factorization of a n-by-n matrix A produces a couple of n-by-n matrices, L (lower
triangular) and U (upper triangular), and the n-by-n permutation matrices  and II, such
that QAIl = LU. There are different strategies to deal with the LU factorization of generic
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Figure 2: Pivot (a), update (b) and fill-in operations (c) of matrices ¢ and R in MGS

sparse matrices [8]. Some of the options are based on supernodal or multifrontal approaches,
in which arithmetic is performed on dense submatrices [9] (level 2 or 3 BLAS can be used).
A third approach, the one considered in this paper, may consist in selecting some generic
methods, such as left-looking or right-looking LU.

The left-looking strategy, also known as column-based (row-based) method and imple-
mented for instance in the MA48 routine [11], updates in the k-th iteration the k-th column
(of L and U) starting from the & — 1 previously updated columns. This is accomplished by
two different steps for each iteration, a symbolic factorization and a numerical factorization.
In the first step, the nonzero structure of the current column is predicted. The second step
performs the arithmetic operations strictly needed, using the information gathered by the
symbolic factorization. The right-looking LU, also called submatrix-based method, performs
a total of n iterations. In the k-th iteration a pivot is chosen, a column and a row permutations
may be performed so that the pivot occupies the (k, k) position, and, finally, the submatrix
defined by the pivot is updated (that is, elements (k+1:n,k: n)).

Any of the above methods can complete the resolution of the linear system of equations
following four stages: reordering, analyze, factorize and solve. The first step realigns the
matrix with the aim of reducing the complexity of the subsequent processing stages. The
analyze stage chooses the appropriate row and column permutations (2 and II), required for
the selection of the pivot elements. These pivots must be chosen such that the sparsity rate is
preserved (applying, for example, the Markowitz criterion [19]), and the numerical stability is
guaranteed (choosing those pivots greater than a certain threshold value). Afterwards, in the
factorize stage, the factorization QAIl = LU is performed. This may be the most consuming-
time stage, since it performs the update operations for floating-point numbers. Finally, in the
solve stage, the above factorization is use to solve the equation Az =bor ATe =10 .

From a parallel implementation point of view, the left-looking organization does not let us
to exploit as much parallelism as in the right-looking strategy [2], as in the first one a column is



Initialize € and II to the n-by-n identity matrix
Inmitialize R and C
do k=1,n—-1
Find pivot p = (g, A) (Markowitz criterion)
Swap A(k,1:n) and A(u,1:n)
Swap A(1:n,k) and A(1:n,A)
Swap R(k) and R(u)
Swap C(k) and C(X)
Swap Q(k,1:n) and Q(y,1:n)
Swap II(1: n, k) and II(1 : n, A)
Ak+1:n k) Ak 4+1:n,k)/A(k, k)
do j=k+1,n
Ak4+1:n,j)=Ak+1:n,5)— Alk+1:n,k)/A(k,j)
enddo
Update R and C nonzero counts

enddo

Figure 3: Outline for the right-looking LU factorization algorithm, where the analyze and
factorize stages appear joined together

updated in each iteration, while in the second one a complete submatrix is updated. Moreover,
an additional overhead arises from the parallelization of the depth-first search in the symbolic
factorization.

The submatrix-based (right-looking) approach presents two sources of parallelism we can
exploit, as can be derived from the the pseudo-code of Figure 3. The algorithm performs a
number of iterations, each of them involving a pivot search in the reduced matrix (defined as
the (n — k)-by-(n — k) submatrix of A, such that £ <¢,j < n, in the k-th iteration), followed
by a row and a column swapping, and an update of range one in the same reduced matrix. In
this code the Markowitz’s heuristic was chosen for finding the pivot element, which is based
on the minimization of the M;; = (R; — 1)(C; — 1) parameter, where R; (C}) counts for the
number of nonzero elements in the i-th row (j-th column).

The first source of parallelism in the above code corresponds to the loops in charge of
updating of the reduced matrix. The second source of parallelism comes from the sparse
nature of A. In many cases it is possible to merge several updates of range one in only one
update process of multiple range (say, s), by modifying the Markowitz strategy in such a way
that we search for a pivot set containing s compatible pivots, instead of only one pivot element.
A couple of pivots, A;; and Ay, are said compatibles (and independent) if A; = Ag; = 0.

The data flows and accesses for the right-looking LU code is shown in Figure 4, for the piv-
oting (row/column swapping) and sub-matrix updating operations, as well as fill-in. Observe
that for an efficient parallel LU algorithm fast accesses to data by both rows and columns are
required. Therefore we need to use more complex data structures than for the MGS algorithm.

3 Data Structures for Sparse Direct Methods

Direct methods, specifically LU and QR factorizations, decompose the original sparse matrix
A by using simple row and/or column operations. When implementing these methods on a
distributed-memory multiprocessor we should distribute the data across the local memories
in such a way that workload balance and limited communication overhead is assured. Such
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Figure 4: Pivot (a), update (b) and fill-in operations (c) of matrices L and U in LU

data distributions are discussed in the next Section.

Once the local sparse matrices are obtained, we can select a number of data structures
to store them. Typically, in order to save memory (and computations), zero elements of the
sparse matrices are not stored. There are many methods for storing the nonzero elements of
the matrices [4]. Here we will only discuss the Compressed Row and Column Storages (CRS
and CCS). The CRS format represents a sparse matrix A as a set of three vectors (DATA, COL
and ROW). DATA stores the nonzero values of A, as they are traversed in a row-wise fashion,
COL stores the column indices of the elements in DATA, and ROW stores the locations in DATA
that start a row. By convention, we store in the position n+1 of ROW (n is the number of rows
of A) the number of nonzero elements of A plus one. The CCS format is identical to the CRS
format except that the columns of A are traversed instead of the rows.

We can simply take some sort of packed vector format [10] (such as CRS or CCS), or use
some other more complex and flexible data structure for storing the local sparse matrices. We
have experimented with linked lists, pure CRS and CCS compressed formats and some mixed
structure, depending on the type of data accesses we have to deal with.

In a MGS factorization of a sparse matrix only efficient accesses by matrix columns are
needed (see Figure 2). This fact implies large memory and computation savings because we
can use simple packed vectors (CCS, for instance) or one-dimensional doubly linked lists to
store the local sparse matrices. As we can see in Figure 5 (b) each linked list represents one
column of the local sparse matrix where its nonzero elements are arranged in growing order
of the row index. Each item of the list stores the row index, the matrix element and two
pointers. A simplification of the linked list is showed in Figure 5 (a), where the columns
are stored as packed vectors and they are referenced by means of an array of pointers. The
packed vectors do not have pointers inside and, therefore, this mixed structure requires only
almost half as much memory space as the doubly linked list (considering the fact that in the
C compiler of the Cray T3D, for example, the int as well as the double types take up 8 bytes
both). Note that the data structure shown in Figure 5 (a) is a variant of the CCS compressed
format, where the DATA and ROW vectors are joined together and the COL vector is represented
as an array of pointers, with the size of the corresponding column associated with each one.

In a LU decomposition, on the other hand, we require a data structure such as a two-
dimensional doubly linked list (see Figure 5 (c)) in order to make efficient data accesses both
by rows and by columns (see Figure 4). Each item in such a dynamic structure stores not
only the value and the local row and column indices, but also pointers to the previous and
next nonzero element in its row and column (four pointers in total).
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Figure 5: Packed vectors and linked lists as efficient data structures for direct methods: (a)
Packed vectors; (b) one-dimensional doubly linked list; (¢) two-dimensional doubly linked list;
(d) local sparse matrix

From the point of view of an efficient computation, packed vectors are very compact and
allow fast accesses by rows and columns to the matrix elements (but not both at the same
time). Linked lists are specially useful when more flexible accesses to the matrix elements
(by rows and columns simultaneously) are needed. Additionally, there are two critical issues
to be taken into account when factorizing a sparse matrix using a direct method, pivoting
operations and fill-in.

Doubly linked lists make easy the insertion and deletion operations and, hence, we can
deal with the fill-in and pivoting problems in a efficient way. In the case of using packed
vectors, the fill-in problem is more difficult to solve. For a MGS code, for instance, we have
followed this procedure: an auxiliary buffer (which is also a packed vector) long enough to
store one column is allocated. During the updating process of a column, each nonzero entry,
a previously existing one or a new one (fill-in), is stored in the auxiliary buffer, instead of
in the original packed vector. This way, the new elements are just added to the buffer, but
the zeroing of existing entries are discarded. After finishing the column updating process,



| Data Structure | Algorithm | In place | Pivoting | Fill-in | Mem. Fragment.

Linked lists All yes yes yes high
Packed vectors All but no os os low
(w/ pointers) Givens Y Y
CCS/CRS Al,l but no no yes no
Givens

Table 1: Properties for the different data structures

the buffer contains the new packed column. Hence, this auxiliary buffer is just reallocated to
a memory block of its exact size, becoming the new column of the sparse matrix, while the
memory space of the old column is freed. Packed vectors, such as CRS and CCS, have also
the inconvenience of not allowing the pivoting operation (column/row swapping) in a efficient
way. This is the reason of using some mixed data structure, such as the one presented in
Figure 5 (a). Column pivoting is implemented just interchanging pointer values.

But linked lists have also severe drawbacks. The dynamic memory allocation for each new
element is time-consuming, and the list traversing even more, as well as they consume more
space memory than packed vectors. But one major problem is the memory fragmentation due
to allocation/deallocation of items, and spatial data locality loss (cache inefficiency) during
traversing rows and columns due pivoting operations (pivoting does not move data, only
changes pointer references). For these reasons we have made an effort to develop an efficient
parallel MGS and right-looking LU factorization algorithms avoiding linked lists.

Table 1 summarizes the discussed properties of the described data structures from the
point of view of their behaviour when using in parallel sparse direct methods codes. Linked
lists entry in this table corresponds to the structures shown in Figure 5 (b) and (c¢), whereas
packed vectors (w/ pointers) corresponds to that of Figure 5 (a). The last entry is the standard
CCS and CRS compressed formats. All these structures were implemented for the parallel
right-looking LU and QR factorization, this last one using the MGS algorithm, Householder
reflections and Givens rotations (the parallel implementation of the last two methods are
described in [13] and [24]).

In any case, the use of data structures such as packed vectors implies the appearing of
code segments like
init = ¢
DO i=a, b
IF (vu(i) .NE. 0.0) THEN

D0i=a,b .. .
. . vp(init) = vu(i)
vu(row(i)) = vp(i) and row(init) = i
ENDDO .. -
init = init + 1
ENDIF
ENDDO

The first piece of code is used to convert a packed vector to an unpacked one, and has
an assignment statement with indirections at the left-hand side. The second construct is the
reverse operation, used to pack the elements of a sparse vector. In this case we have a loop
containing an induction variable. In general, the current data-parallel compilers (such as the
T3D-Craft compiler) fail when compiling these kind of constructs. In the first case because
the contents of row() is unkown until runtime and the compiler simply assume dependencies
across iterations. In the second piece of code, the increment of the induction variable is
included into a conditional statement.
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Figure 6: (a) A sparse matrix. (b) The BRS partitioning of the sparse matrix for a 2x2
processor mesh, where the data elements for processor 0 are underlined. (¢) The compressed
local submatrix for processor 0

4 Pseudo-Regular Sparse Data Distributions

Current data-parallel languages, such as HPF, Vienna Fortran or Craft, include the most
useful and simple schemes for distributing data across the processors, specifically block, cyclic
and a combination of both. All these distributions allow us to parallelize in a efficient way
most Fortran codes with regular accesses to data. However, this is not true for applications
with irregular patterns for accessing data. These programs contain array indirections that
produce not well-balanced parallel codes and/or with complex communication patterns when
using regular data distributions.

Consider, for instance, applications that process data organized as sparse matrices. The
use of compressed formats for storing sparse matrices implies the appearing of array indirec-
tions in the code. Our approach to deal with this kind of data accesses is to define pseudo-
regular data distributions as extensions of the classical block and cyclic regular distributions,
such as MRD (Multiple Recursive Decomposition) and BRS (Block Row Scatter) or BCS
(Block Column Scatter) [22][1]. Let us concentrate on the last two data distributions, as they
are extensions of the regular cyclic distribution, one of the most successful data distribution
for matrix computations.

In our current situation, a sparse matrix is represented by a set of vectors (arrays), depend-
ing on the compressed format considered (CRS or CCS, for example). Instead of decomposing
these arrays separately, as in commonly done, we follow the approach of considering the sparse
matrix as a dense one, mapping this dense matrix on the processors using some standard data
distribution and, finally, representing the local sparse matrices using the adopted compressed
format. In this way, BRS (BCS) uses a cyclic mapping of the matrix represented by its CRS
(CCS) format, as shown in figure 6.

An HPF-like description of the BRS data distribution may be as follows,

'HPF$ SPARSE(CRS(DATA,COL,ROW)) :: A(N,N)
'HPF$ DISTRIBUTE(CYCLIC,CYCLIC) ONTO MESH :: A

The SPARSE directive means that the sparse matrix A is actually represented in a CRS
format, using the arrays DATA, COL and ROW. The BRS distribution is a cyclic distribution of
the compressed representation of a sparse matrix. Stating CYCLIC in a DISTRIBUTE directive



[ Distribution | SHL400 | JPWH991 | SHERMAN1 | MAHINDAS | ORANI678 | SHERMANG |

BCS 6 59 27 21 134 191
CHAOS 52 615 243 179 1228 1685

Table 2: Execution times (in sec.) for MGS using BCS and CHAOS

| Matrix | Origin | mxn | #elem(A) | % #elem(A) |

SHI1.400 Linear programming problems 663 X663 1712 0.39%
JPWH991 Circuit physics modeling 991 x991 6027 0.61%
MAHINDAS Economic modeling 12581258 7682 0.49%
ORANI678 Economic modeling 2529x2529 90158 1.41%
WELL1850 Least squares problems in surveying | 1850x712 8758 0.66%
LNS3937 Compressible fluid flow 3937x3937 25407 0.16%
ORSREG1 Oil reservoir simulation 2205x2205 14133 0.29%
STEAM2 Oil reservoir simulation 600 x600 13760 3.82%
SHERMAN1 Oil reservoir modeling 1000 1000 3750 0.37%
SHERMAN? Oil reservoir modeling 1080 1080 23094 1.98%
SHERMANS5 Oil reservoir modeling 3312x3312 20793 0.19%

Table 3: Harwell-Boeing test matrices

is understood by the compiler as applying a BRS distribution to the DATA, COL and ROW arrays
declared in the SPARSE statement. This way we have the benefits of a cyclic data distribution
(load balancing and simple and limited communication patterns) applied to a sparse matrix
independently of the compressed format used to represent it.

As a test to compare our parallel solutions with others using the standard dense data
distributions, we made an experiment implementing the sparse algorithms using such distri-
butions and the CHAOS runtime library [21], in order to deal with the irregular data accesses.
We have inserted routines from the CHAOS library [23] to rebalance the load (and data) of the
parallel MGS algorithm. Basically, through these routines, we have generated a translation
table which assigns the global indices of matrix A to the different processors by following an
irregular model. This table is distributed across the processors and is used by the routine
localize to translate the global indices into local indices within each processor. It also gener-
ates a communication schedule which is used to gather the off-processor data which are needed
during computation, and to scatter back local copies after computation. For the parallel al-
gorithm MGS, table 2 shows a comparison of the execution times using BCS pseudoregular
data distribution as opposed to the irregular distribution used in the CHAOS routines. The
execution times have been taken in a cluster of 16 workstations Sun SPARCstation 4 with
85-MHz microSPARC-II processors in a PVM message-passing environment. The test sparse
matrices were taken from the Harwell-Boeing suite and are described in table 3.

The CHAOS approach has a large number of communications and high memory overhead,
as a consequence of accessing a large distributed data addressing table. This results in high
execution times. BCS (and BRS) distribution, on the other hand, is adequate for sparse matrix
problems (in particular, the MGS algorithm) because it exploits the data and computations
locality and minimizes the communications. It does not require neither additional storage
nor communications for addressing nonlocal data, as all the processors know where data are
allocated.
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5 Evaluating Data Structures and Distributions

5.1 Parallel Sparse MGS

We have designed three different parallel implementations of the MGS algorithm of the Fig-
ure 1. The parallelization procedure we have used is extensively explained in [7]. Here we will
focus in the performance evaluation of the parallel MGS algorithm in terms of the discussed
data structures and distributions. All the experimental results were obtained using a Cray
T3D multiprocessor [6].

A first parallel implementation is a simplification of the considered MGS algorithm. The
pivoting process is discarded and the upper triangular R matrix is the only one calculated
(and the only needed in many codes that incorporate this kind of factorization). In this
parallel version all the local sparse matrices are stored using packed vectors. Specifically, the
initial A matrix is stored by packed columns (CCS compressed format) in a buffer. As R is
calculated row by row, each one is stored as a packed vector (CRS format) in other buffer. As
we do not intend to preserve (), the buffer associated to A (and @ in the in-place algorithm)
operates as a ring buffer, saving this way local memory in the processors.

Figure 7 shows an example for a A matrix with four columns. Each filled block represents
a column for A (and ()) and a row for R. As we can see, in each k iteration, the last n—(k+1)
columns of ) are updated, and the k& row of R is calculated. Whenever the end of the ring
buffer storing () is reached, the new columns are stored from the beginning of such buffer.
Note that we have to dimension the ring buffer to a size long enough to preserve, during the
k iteration, the k column of () until the updating of the last column of @ (see Figure 1).

This parallel algorithm was coded in Fortran 77 and the Cray T3D SHMEM [5] native
shared-memory library was used for communication. With these routines we can minimize
the communication overhead at the expense of a very careful programming due to possible
synchronization and cache coherence problems. It only has three communication operations
per iteration (say, k), a reduction for obtaining the norm of the k column, a broadcast of the
normalized k column to all processor columns of the mesh, and a reduction for calculating
the dot products (see Figure 1). The rest of computations are completely local. This re-
duced number of communications comes from the absence of the pivoting operation and the
resolution of the least squares problem. Figure 8 presents the parallel execution times for
several processor meshes and Harwell-Boeing sparse matrices. We can see that, in general,
the parallel efficiency is near optimal (in some cases we have superlinearity). A very low
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Figure 8: MGS execution times for different mesh sizes and Harwell-Boeing sparse matrices,

using packed vectors (CCS and CRS) and Cray T3D SHMEM
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Figure 9: Parallel sparse MGS execution times for different mesh sizes and Harwell-Boeing
sparse matrices, using linked lists (a) or packed vectors (b), and Cray T3D PVM

communication overhead (small number of communications and very efficient due to the use
of SHMEM routines) and very high spatial locality exploitation (packed vectors allow us to
avoid the use of pointers and dynamic memory allocations) justify this behaviour.

Two more parallel implementations of the complete MGS algorithm (including pivoting)
were designed using the one-dimensional doubly linked list and the packed vectors shown in
Figure 5 (b) and (a), respectively, for storing the local sparse matrices. Both versions were
coded in C and using PVM routines for message-passing. In order to reduce the communi-
cation overhead the low-latency communication functions pvm_fastsend and pvm_fastrecv
(non-standard PVM routines) were used for messages of length less than 256 bytes. Efficient
custom reduction operations suitable for the algorithm were also developed. Figure 9 shows
the parallel execution times obtained for different processor mesh sizes and Harwell-Boeing
sparse matrices (see Table 3) for both implementations. The execution times include the QR
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Figure 10: Parallel sparse LU execution times for different mesh sizes and Harwell-Boeing
sparse matrices, using linked lists and Cray T3D PVM (a), and packed vectors (CCS) and
Cray T3D SHMEM (b)

factorization as well as the solving of the least squares problem. The time required for data
distribution and collection is not included because we assume that these algorithms are sub-
problems within wider programs. As we can see, the execution times are in correspondence
with the size of the input matrices. In the other hand, the dependence of the times with the
size of the machine is almost linear, that is, the speedup (or efficiency) is very high. Compar-
ing both figures it can be seen that the packed vectors based implementation is faster than

the one using linked lists.

5.2 Parallel Sparse LU

Two parallel implementations of the right-looking LU algorithm, based on doubly linked lists
and packed vectors, are described. Both parallel algorithms were designed using the same
environment as in the parallel MGS.

The first parallel algorithm is mapped on a mesh of P} X P processors using a BCS (sparse
cyclic) data distribution and a local representation with two-dimensional doubly linked lists.
Note that the use of linked lists is almost unavoidable in order to handle in an efficient
way the pivoting operation (that is, row and column swapping). This algorithm is extensively
described and evaluated in [3]. Figure 10 (a) reproduces the parallel executions times obtained
on the Cray T3D, for different mesh sizes and Harwell-Boeing sparse matrices (see Table 3
for a description). The parallel algorithm was coded in C and PVM routines were used for
message-passing (the Cray T3D specific low latency PVM functions were used as in the MGS).
There are some improvements to the linked list implementation developed by Jacko Koster
[17], such as the reduction of the communications cost by an implicit pivoting together with
sporadic workload re-balancing phases.

On the other hand, in the parallel version based on packed vectors, the A matrix is
distributed following the BCS scheme and the sparse local matrices are stored in the implicit
CCS format. While in the left-looking LU the fill-in only appears in the k column at each
iteration, in the right-looking LU the fill-in affects to the whole reduced submatrix. This



fill-in implies much more data movement than in the left-looking case, and also it could be
associated with a garbage collection operation. We are also forced to minimize the number of
row and column permutations during the factorization stage. To accomplish that the analyze
and factorize steps are carried out separately'. For the analyze stage the MA5S0AD routine
[12] (included in the MA48 software package) is used, but it has not been parallelized, it is
just executed in only one processor before the factorize stage.

As the sparsity rate of the matrix decreases during the factorization, a switch to a dense
LU factorization is advantageous at some point. The iteration beyond which a switch to dense
code takes place is decided in the analyze stage. Hence, a sparse factorization code is executed
initially, but when reaching the switch point a dense code continues the factorization. This
dense code is based on Level 2 (or 3 if a block cyclic distribution is used) BLAS, and includes
numerical partial pivoting in order to assure stability. Once the sparse computations are
carried out the reduced submatrix is scattered to a dense array. Therefore, the overhead of
the switch operations is negligible and the reduced dense submatrix appears distributed in a
regular cyclic manner.

Figure 10 (b) presents the parallel execution times for the BCS-based right-looking LU
algorithm. This time the parallel algorithm was coded in Fortran 77 and the Cray T3D
SHMEM [5] native shared-memory library was used for communication. The factorization
numerical errors of our parallel algorithm are similar to those of the MA48 routine, and
they can be reduced by applying a previous scaling to the matrix. Besides, the fill-in of our
algorithm is also similar to that of the MA48 (using the same threshold). Nevertheless, the
sequential time of our new algorithm is significantly higher than in the MA48 (very optimized).

6 A Proposal for Extending HPF Capabilities

Current data-parallel languages (HPF, Fortran D, Vienna Fortran, Craft ...) do not provide
support to specify efficient data distributions for sparse matrices, nor flexible data structures
for storing the local sparse matrices. However the distribution strategy of a sparse matrix
across the processors and the data structures used to store the corresponding local sparse
matrices are crucial decisions in order to obtain high parallel efficiencies. As an example,
the experimental evaluation presented in the above section shows that we can obtain high
efficiencies from parallel sparse direct methods codes just selecting carefully a suitable data
structure and distribution. Indeed in all our parallel sparse algorithms we have used our
pseudo-regular data distributions (specifically BRS and BCS and variants), obtaining very
good speedups. None of them are included in the existing data-parallel languages.

It would be of major interest if we could incorporate to a current data-parallel language,
such as HPF, some sort of data structure declaration, as linked lists and packed vectors, but
without loosing the convenient matrix-like computation specifications. That is, if we could
use some efficient data structure for storing the sparse matrices but with no need to deal with
the complexities of use it directly. Figure 11 presents an example of such a specification for
the MGS algorithm. The SPARSE directive is used to specify A as a sparse matrix that is stored
using a LLCS (Linked List Column Storage) data structure (the structure shown in Figure 5
(b)). That is, with this directive we establish an identification between the matrix A and its
machine storage representation. From this point on, we can specify the computations using
matrix notations but with the confidence that the compiler will translate these specifications

!Obviously we must incorporate in some way a numerical pivoting to the factorize stage, only when the
chosen pivot may introduce numerical instability.



'HPF$ PROCESSORS, DIMENSION(4,4) :: MESH
PARAMETER (M=1850)
PARAMETER (N=712)
PARAMETER (ACCURACY=1.0E-20)
INTEGER I, J, K, RANK, P
REAL PIVOT
REAL, DIMENSION(M) :: NORM, VSUM
REAL, DIMENSION(CN) :: VCOL

'HPF$ REAL SPARSE(LLCS()) :: A(M,N)
'HPF$ REAL SPARSE(LLCS()) :: R(N,ID

'HPF$ ALIGN VSUM(:) ,NORM(:) WITH A(:,*)
'HPF$ ALIGN VCOL(:) WITH A(*,:)
'HPF$ DISTRIBUTE(CYCLIC,CYCLIC) ONTO MESH :: A, R

RANK = I

‘HPF$ INDEPENDENT
DOJ =1, X
NORM(J) = DOT_PRODUCT(AC(:,J) ,AC:,]))
ENDDO

DOK=1, X
PIVOT = MAXVAL(HORM(K:N))

IF (PIVOT < ACCURACY) THEN
RANK = K-1
EXIT

ELSE
P = MAXLOC(NORM(K:I))
SWAP(A(: ,K) ,AC:,P))
SWAP(R(: ,K) ,R(:,P))
NORM(P) = NORM(K)
NORM(K) = PIVOT

ENDIF

PIVOT = SQRT(PIVOT)
R(K,K) = PIVOT

AC:,K) = A(:,K)/PIVOT
VCOL = UNPACK(A(:,K))

‘HPF$ INDEPENDENT
DO J = K+1, W
R(K,J) = DOT_PRODUCT(VCOL, A(:,J))
ENDDO

VSUM(K+1:N) = UNPACK(R(K,K+1:))

C Local computations (following the owner compute rule)
DO J = K+1, N
NORM(J) = NORM(J) - VSUM(J) * VSUM(J)
'HPF$ FILLIN IN A

D0OI =1, H
ACI,J) = A(I,J) - VCOL(I) * VSUM(J)
ENDDO
ENDDO

ENDDO

Figure 11: Outline for a HPF-like specification of the parallel MGS algorithm

to computations using linked lists.

We have to take a special action to deal with the fill-in problem, because the sparse
matrices are stored compressed. For instance, consider the inner loop I at the end of the code
in Figure 11. By default, this loop runs only over the non-zero elements of a J column of A.
But for the column updating to be correct, the I loop must run over all the elements, zero
and non-zero, of A, because A(I,J) could be zero but not VCOL(I) * VSUM(J) (fill-in). We
have incorporated the 'HPF$ FILLIN IN A just before the I loop in order to declare this fact,
and change the normal behaviour of that loop.

In the proposed code, the meaning of some Fortran 90 and HPF standard procedures and
functions should be extended. For instance, at the beginning of the code, the intrinsic F90
procedure DOT_PRODUCT is used for computing the square of the norm of the j column of A. In



our case, that column is stored as a linked list and, therefore, this procedure should consider
this storage representation. DOT_PRODUCT is also called later to compute the elements of the &
row of R (first inner loop). In this case, its first argument is an array (VCOL) and the second
one is a linked list (j column of A). There are also new procedures, SWAP() and UNPACK().
The first one is used to swap two arrays, in our case, two columns (pivoting operation). The
second one converts a packed vector to an unpacked one (with zeroes). This second procedure
is a local operation (no communications) because the sparse matrices are distributed using
BCS, that is, a cyclic distribution as dense (unpacked) matrices, and then the local matrices
are compressed locally, at each processor.

As the final indirections for access pattern depend on the actual input data, part of the
analysis must be done during program execution. In order to support all this new functionality,
we are in the process of extending our run-time library DDLY (Data Distribution Layer) [25]
with a set of routines to handle linked lists, to be called from the output machine code
generated by a HPF compiler.

7 Conclusions

One of the major reasons why data-parallel computation has not achieved outstanding results,
in terms of functionality and efficiency, has been the development of very general programming
and compilation techniques without a deep orientation to real codes.

It is clear that sparse direct methods are complex computations, in such a way that the
current data-parallel technology does not have the elements to solve them efficiently and in
an elegant manner. Two are the main difficult issues, pivoting and fill-in. Both are difficult
to handle, time-consuming and with high memory overhead, because the matrices are stored
in a compressed format (that is, only nonzero elements are stored). The more flexible way
to manage these problems implies the use of some sort of linked list data structure to store
the sparse matrices. Nowadays, there are no data-parallel tools with an efficient handling of
this kind of data structures, and the cost of development for those strategies are still under
evaluation.

This paper has presented a possible solution to deal with these computations in a HPF
environment. The idea is to extend the HPF capabilities in such a way that the programmer
may not only specify a particular sparse data distribution but also a particular sparse data
storage representation. This way we establish an identification of the array representation of a
sparse matrix at the programmer level and the storage representation (packed vectors, linked
lists, ...) at the compiler (machine) level. The programmer deals with convenient matrix
notations and the compiler translates them to machine code by using packed vectors and/or
linked lists handling routines (from the DDLY runtime library). The results from our manual
parallel implementations of direct solvers (emulating the output of a HPF compiler) show that
we can obtain high efliciencies using the above strategy.
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