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In this work we present a parallelization of Lanczos and Dongarra�Sorensen algo�
rithms� Our trend is to solve the Symmetric Eigenproblem in Sparse Matrices in
an e�cient way� We have evaluated our results on multiprocessors CrayT�D� and
Paramid�

� The Eigenproblem

There are many applications� both in Science as in Engineering that require to
solve the eigenproblem� The particular case of large sparse symnmetric matri�
ces is of special interest� Indeed� this kind of problem arises in a wide range
of applications� as are for example� dynamic analysis of large�scale structures�
statistical analysis of data� the study of solar convection� etc�

In order to compute the eigenvalues we have proceeded in two main stages�
�rstly� we tridiagonalize the problem matrix �Lanczos method�� and secondly�
we compute the eigenvalues using the tridiagonal matrix we have obtained
previously �Dongarra�Sorensen algorithm��

Lanczos algorithm ��� performs a tridiagonalization of a symmetric matrix
A � Rn�n in such a way that it is very well suited when it is a large and sparse
one� The method generates a sequence of Tj with the propierty that the
extremal eigenvalues of Tj � Rj�j are progressively improving approximates
of the extremal eigenvalues of A � This way� we arrive to obtain a tridiagonal
matrix T with the same eigenvalues than A�

The Lanczos method projects matrix A over a Krylov subspace� This way�
the orthogonal matrix Q that veri�es the expresion QtAQ � T turns out to
be an orthonormal basis of this subspace� and its columns are but the the so
called Lanczos vectors� For achieving its goal� the algorithm starts with an
initial Lanczos vector� q� whose norm equals 	� obtaining in each iteration a
new Lanczos vector� as pointed out by the recursive expression

Aqj � �j��qj�� 
 �jqj 
 �jqj�� ���� q�� � �

for j����n��� Besides a new qj� as a result of each iteration we will have a new
�j and �j� elements of the subdiagonal and diagonal� respectively� of matrix

	



Tj � obtained after j
	 iterations� In exact arithmetic� the process would stop
with the encountering of a �j � �� event that would signal the computation of
an exact Krylov space K�A� q�� j��

However� in practice� the algorithm obtained in such a way does not work
properly� As we dont work with an exact arithmetic� a loss of orthogonality
between the Lanczos vectors occurs that darkens the termination condition
and results in problems as the one of the phantom eigenvalues�

This loss of orthogonality is due to the appearance of small values of �j �
indicators of a cancellation in the computed rj � auxiliar vectors with the same
direction than the correspondig vector qj � For solving this problem� we have
chosen to implement a full reorthogonalization� ensuring that each new Lanczos
vector we obtain is orthogonal to each of the previously obtained ones�

Once we have applied the Lanczos algorithm to the matrix A� we must
solve the eigenproblem associated with the new matrix T � With a view to
doing so� we have used the Dongarra�Sorensen algorithm��

Dongarra�Sorensen algorithm let us to solve the eigenproblem for symmet�
ric tridiagonal matrices� It is based upon a divide and conquer scheme� very
well suited for being parallelized�

The algorithm consists in the successive splitting of the original problem
into subproblems of less size and complexity� For this purpose we use rank�	
modi�cations of the form�

T �

�
T� �ke

T
�

��e
T
k T�

�
�

�
�T� �

� �T�

�

 �

�
ek
e�

� �
eTk eT�

�

Because of the above process� we deal with a computational structure based in
a binary tree� Once we have solved the subproblems belonging to the lowerest
level of the tree� applying a standard solver for the eigenproblem� as may be
dsteqr from LAPACK� a recontruction process begins� This process involves
obtaning a nodes eigenvalues using the information provided by its right and
left sons� Traversing the tree in such a way� from the bottom to the top
�iterative or bottom�up scheme ��� and after consecutive recontructions� we
arrive to a solution of the original problem� the one associated with the primary
node�

Using this technique is advantageous mainly because of the important de�
crease in the execution time demanded by the routine dsteqr as the problem to
deal with becomes smaller� and also by reason of the relatively small complexity
of the reconstruction process�

This simplicity of the reconstruction process is due to the rank�	 tearing
satisfying the interlacing property �� stating

d� � �� � d� � �� � � � �� dn � �n

�



where �i are the eigenvalues we are searching� belonging to the �father� prob�
lem� and di are the eigenvalues of the son subproblems of that one� Thanks
to this propierty we can build an iterative method for the recontruction pro�
cess� An implementation of this method can be found in LAPACK� in routine
dlaed��

� Parallelization of the algorithms

As refers to the Lanczos algorithm� we have implemented a mediumgranularity
parallelization� at the loop level� We have projected the iterations associated
with vectorial operations over the two dimensions of the mesh� With this view�
the dense data structures have been distributed in a cyclic way� The sparse
matrix follows the BRS distribution scheme � assuring this way� the perfect
alignement with the dense ones� Because of the data dependences� the extern
loop of the algorithm can not be distributed over the processors�

Dongarra algorithmparallelization is based upon its binary tdree structure�
In the lowerest level of the tree� we have a number of subproblems equal to the
number of available processors �a power of two� to be solve with dsteqr� Then
we come into an iterative process of consecutive recontructions� traversing the
tree from bottom to up� The number of processors that will colaborate in the
resolution of the same subproblem will be multiplied by two with each new
iteration�

The computers used for the evaluation of our algorithms have been the
Cray T�D� as well as the Paramid� Both of them are distributed memory mul�
tiprocessors� Matrices from the Harwell�Boeing collection have been selected
for testing�

Figure 	 plots the Speed�Up values obtained with our parallel Lanczos
algorithm using SHMEM on Cray T�D� We show the mesh con�gurations
that furnish us with the better results for a �xed number of processors� Our
measurements showed that the algorithm is scalable in both mesh dimensions�
though with a better performance in topologies having the X dimension slightly
bigger than the Y one�

The speed�up values obtained with Dongarra algorithm� are displayed also
in �gure 	� It can be observed that are very close the ideal ones� even using the
PVM programming model� The reason is most of the time in the sequential
algorithm is spend solving the lowerest level subproblems �appliying routine
dsteqr�� and in the recontruction process�

The time employed in recontruction �mainly routine dlaed�� will be ap�
proximately divided between the number of available processors� each one of
them will apply the iterative method for the computation of a subset of the
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�a� Lanczos Speed�Up using SHMEM �b� Dongarra Speed�Up using PVM

Figure �� Speed�Up of the parallel algorithms

eigenvalues� And as refers to the dsteqr routine it has a behaviour such that
solving a problem of half the size than the original one will require less than
half the time�

That is why in the sequential version of the algorithm we obtained speed�
up values �refered to the direct application of the standard routine dsteqr � as
high as twenty�

� Conclusions

We have parallelized two algorithms for computing the eigenvalues of sparse
symmetric matrices that apply the Lanczos and Dongarra�Sorensen methods
on a mesh topology� As we showed in the above section� the results obtained
evaluating those algorithms were satisfactory enough�

For both Lanczos and Dongarra algorithms� we have observed good values
in the e�cience� as well as a good scalability� And in the particular case of
Dongarra algorithm� we have been able to con�rm the e�ciency of the divide
and conquer scheme� We obtained pretty good improvements in the sequential
algorithm just by using it�

However� in Lanczos algorithm� full reorthogonalization results in a very
high increment of the execution time� due to the introduction of a dense matrix
built with the Lanczos vectors� This implies not only a great increment in
the memory requirements� but also the introduction of dense matrix�vector
products of high computational cost� That is the reason of our working� in this
moment with the view of implementing partial or selective reorthogonalization
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methods� of less cost�
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