Solving the Eigenvalues of Symmetric
Sparse Matrices Applying Parallelism

M.A. Trenas
R. Asenjo
E.L. Zapata
September 1996
Technical Report No: UMA-DAC-96/32
Published in:

Euroconference: Supercomputation in Nonlinear and Disordered Systems:
Algorithms, Applications and Architectures
San Lorenzo de El Escorial, Madrid, Spain, September 23-28, 1996, pp. 347-351
(published by World Scientific Pub., Singapore, L. Vazquez, F. Tirado, and I. Martin, Eds., 1997)

University of Malaga

Department of Computer Architecture
C. Tecnologico = PO Box 4114 « E-29080 Malaga = Spain

SOLVING THE EIGENVALUES OF SYMMETRIC SPARSE
MATRICES APPLYING PARALLELISM

MARIA A. TRENAS, R. ASENJO, E.L.. ZAPATA
Dept. de Arquitectura de Computadores
Universidad de Malaga

email: {maria, asenjo, ezapata} @ac.uma.es

In this work we present a parallelization of Lanczos and Dongarra-Sorensen algo-
rithms. Our trend is to solve the Symmetric Eigenproblem in Sparse Matrices in
an efficient way. We have evaluated our results on multiprocessors CrayT3D, and
Paramid.

1 The Eigenproblem

There are many applications, both in Science as in Engineering that require to
solve the eigenproblem. The particular case of large sparse symnmetric matri-
ces 1s of special interest. Indeed, this kind of problem arises in a wide range
of applications, as are for example, dynamic analysis of large-scale structures,
statistical analysis of data, the study of solar convection, etc.

In order to compute the eigenvalues we have proceeded in two main stages:
firstly, we tridiagonalize the problem matrix (Lanczos method); and secondly,
we compute the eigenvalues using the tridiagonal matrix we have obtained
previously (Dongarra-Sorensen algorithm).

Lanczos algorithm »° performs a tridiagonalization of a symmetric matrix
A € R™"™in such a way that it is very well suited when it is a large and sparse
one. The method generates a sequence of T; with the propierty that the
extremal eigenvalues of T; & RI*J are progressively improving approximates
of the extremal eigenvalues of A . This way, we arrive to obtain a tridiagonal
matrix 7" with the same eigenvalues than A.

The Lanczos method projects matrix A over a Krylov subspace. This way,
the orthogonal matrix @) that verifies the expresion Q*AQ = 1" turns out to
be an orthonormal basis of this subspace, and its columns are but the the so
called Lanczos vectors. For achieving its goal, the algorithm starts with an
initial Lanczos vector, gy whose norm equals 1, obtaining in each iteration a
new Lanczos vector, as pointed out by the recursive expression

Agj = Bj—1qj-1 + @45 + Biq5+1 Bo1,4-1=0

for j=0..n-2. Besides a new g¢;, as a result of each iteration we will have a new
B; and «j, elements of the subdiagonal and diagonal, respectively, of matrix

1

T}, obtained after j+1 iterations. In exact arithmetic, the process would stop
with the encountering of a §; = 0, event that would signal the computation of
an exact Krylov space K(A, qo,j).

However, in practice, the algorithm obtained in such a way does not work
properly. As we don’t work with an exact arithmetic, a loss of orthogonality
between the Lanczos vectors occurs that darkens the termination condition
and results in problems as the one of the phantom eigenvalues.

This loss of orthogonality is due to the appearance of small values of 3;,
indicators of a cancellation in the computed r;, auxiliar vectors with the same
direction than the correspondig vector ¢;. For solving this problem, we have
chosen to implement a full reorthogonalization, ensuring that each new Lanczos
vector we obtain is orthogonal to each of the previously obtained ones.

Once we have applied the Lanczos algorithm to the matrix A, we must
solve the eigenproblem associated with the new matrix 7. With a view to
doing so, we have used the Dongarra-Sorensen algorithm 2.

Dongarra-Sorensen algorithm let us to solve the eigenproblem for symmet-
ric tridiagonal matrices. It is based upon a divide and conquer scheme, very
well suited for being parallelized.

The algorithm consists in the successive splitting of the original problem
into subproblems of less size and complexity. For this purpose we use rank-1
modifications of the form:

_ Ty Pk 6? _ Tl 0 €k T T
=l =10 R e[t]re a4
Because of the above process, we deal with a computational structure based in
a binary tree. Once we have solved the subproblems belonging to the lowerest
level of the tree, applying a standard solver for the eigenproblem, as may be
dstegr from LAPACK, a recontruction process begins. This process involves
obtaning a node’s eigenvalues using the information provided by its right and
left sons. Traversing the tree in such a way, from the bottom to the top
(iterative or bottom-up scheme ?), and after consecutive recontructions, we
arrive to a solution of the original problem, the one associated with the primary

node.

Using this technique i1s advantageous mainly because of the important de-
crease in the execution time demanded by the routine dstegr as the problem to
deal with becomes smaller, and also by reason of the relatively small complexity
of the reconstruction process.

This simplicity of the reconstruction process is due to the rank-1 tearing
satisfying the interlacing property !, stating

di <M <dy <Ao< <dy <An

2

where \; are the eigenvalues we are searching, belonging to the “father” prob-
lem, and d; are the eigenvalues of the son subproblems of that one. Thanks
to this propierty we can build an iterative method for the recontruction pro-
cess. An implementation of this method can be found in LAPACK, in routine

dlaedy.

2 Parallelization of the algorithms

As refers to the Lanczos algorithm, we have implemented a medium granularity
parallelization, at the loop level. We have projected the iterations associated
with vectorial operations over the two dimensions of the mesh. With this view,
the dense data structures have been distributed in a cyclic way. The sparse
matrix follows the BRS distribution scheme * assuring this way, the perfect
alignement with the dense ones. Because of the data dependences, the extern
loop of the algorithm can not be distributed over the processors.

Dongarra algorithm parallelization is based upon its binary tdree structure.
In the lowerest level of the tree, we have a number of subproblems equal to the
number of available processors (a power of two) to be solve with dstegr. Then
we come into an iterative process of consecutive recontructions, traversing the
tree from bottom to up. The number of processors that will colaborate in the
resolution of the same subproblem will be multiplied by two with each new
iteration.

The computers used for the evaluation of our algorithms have been the
Cray T3D, as well as the Paramid. Both of them are distributed memory mul-
tiprocessors. Matrices from the Harwell-Boeing collection have been selected
for testing.

Figure 1 plots the Speed-Up values obtained with our parallel Lanczos
algorithm using SHMEM on Cray T3D. We show the mesh configurations
that furnish us with the better results for a fixed number of processors. Our
measurements showed that the algorithm is scalable in both mesh dimensions,
though with a better performance in topologies having the X dimension slightly
bigger than the Y one.

The speed-up values obtained with Dongarra algorithm, are displayed also
in figure 1. It can be observed that are very close the ideal ones, even using the
PVM programming model. The reason is most of the time in the sequential
algorithm is spend solving the lowerest level subproblems (appliying routine
dstegr), and in the recontruction process.

The time employed in recontruction (mainly routine dlaed{) will be ap-
proximately divided between the number of available processors: each one of
them will apply the iterative method for the computation of a subset of the

3

: : 8.0 :
3 - - ENOS3 (N=960) I ©--~O2 nodos

55.0 |-
500 | ¢ —©BCSSTK14 (N=1806) g &--4 nodos 8--8
©--O PSMIGR-1 (N=3140) o &---88 nodos =

450 ' A-——ABCSSTK24 (N=3562) 7 60 L T

40.0 - A /Er

35.0 y] !
s ; s I
o 300 F g T 40k !
& 250 id g B JP-SSEDN
o 7 @ / 7"

200 + / -

// &
15.0 - L /
20 T
100 F B =7
T - ﬁ‘"ﬁ
50 | e]]
"7 e
00 : : : : 0.0 : s ‘ ‘ ‘
10 20 30 40 5.0 6.0 00 2000 4000 600.0 8000 10000 1200.0
Log2 del numero de nodos N
(a) Lanczos Speed-Up using SHMEM (b) Dongarra Speed-Up using PVM

Figure 1: Speed-Up of the parallel algorithms

eigenvalues. And as refers to the dstegr routine it has a behaviour such that
solving a problem of half the size than the original one will require less than
half the time.

That is why in the sequential version of the algorithm we obtained speed-
up values (refered to the direct application of the standard routine dstegr) as
high as twenty.

3 Conclusions

We have parallelized two algorithms for computing the eigenvalues of sparse
symmetric matrices that apply the Lanczos and Dongarra-Sorensen methods
on a mesh topology. As we showed in the above section, the results obtained
evaluating those algorithms were satisfactory enough.

For both Lanczos and Dongarra algorithms, we have observed good values
in the efficience, as well as a good scalability. And in the particular case of
Dongarra algorithm, we have been able to confirm the efficiency of the divide
and conquer scheme. We obtained pretty good improvements in the sequential
algorithm just by using it.

However, in Lanczos algorithm, full reorthogonalization results in a very
high increment of the execution time, due to the introduction of a dense matrix
built with the Lanczos vectors. This implies not only a great increment in
the memory requirements, but also the introduction of dense matrix-vector
products of high computational cost. That is the reason of our working, in this
moment with the view of implementing partial or selective reorthogonalization

4

methods, of less cost.

References

1. G.H.Golub, C.F. Van Loan. Matriz Computations, second edition. The
Johns Hopkins University Press, 1993.

2. J.J. Dongarra, D.C.Sorensen. A Fully Parallel Algorithm for the
Symmetric Eigenvalue Problem. SIAM J. Sci. Stat. Comput.,
2(1987),pp.139-154.

3. S. Sur, W. Bhm. Analysis of Non-5Strict Functional Implementations of
the Dongarra-Sorensen Figensolver. ACM (1994),pp.412-418.

4. R. Asenjo, L.F. Romero, M. Ujaldn, E.L. Zapata. Sparse Block and
Cyclic Data Distributions for Matriz Computations. In L. Grandinetti,
G. R. Joubert, J. J. Dongarra, and J. Kowallik, editors; High Perfor-
mance Computing, Technology and Aplications. Elsevier Science 1994,
pp-6-8.

5. M.A. Trenas, Parallel Algorithms for Eigenvalues Computation with

Sparse Matrices, Master Thesis, University of Malaga, November 1995
(in spanish).

