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1 Introduction

Irregular memory access patterns have traditionally caused difficulties in the automatic detection
of parallelism, and in many cases parallelization is prevented. These problems are nonetheless
important in that a significant fraction of current applications are irregular in nature.

Some work has been done in the past, but very few studies have been made of complete codes
[20]. This paper studies how well automatic parallelization techniques work on a collection of real
codes with sparse and irregular access patterns. In conducting this work, we have compared existing
technology in the commercial parallelizer PFA from SGI with the Polaris restructurer [7]. In cases
where performance was poor, we have done manual analysis and determined the techniques necessary

for automatic parallelization.



2 The Benchmark Suite

Serial exec
Benchmark Description Origin | # lines (seconds)
CHOLESKY Sparse Cholesky Factorization HPF-2 1284 265
DSMC3D Direct Simulation Monte Carlo HPF-2 1794 482
EULER Euler equations on 3-D grid HPF-2 1990 303
GCCG Computational fluid dynamics Vienna 407 739
LANCZOS Eigenvalues of symmetric matrices Malaga 269 868
MVPRODUCT Basic matrix operations Malaga 342 477
NBFC Molecular dynamics kernel HPF-2 206 375
SpLU Sparse LU Factorization HPF-2 363 471

Table 1: Benchmark Codes

Table 1 summarizes the eight codes in the benchmark suite employed in our experiments. The
suite consists of a collection of sparse and irregular application programs as well as several kernels
representing key computational elements present in sparse codes. Several of the benchmarks in
our suite are derived from the set of motivating applications for the HPF-2 effort [11]. Exceptions
include the kernels MVPRODUCT and LANCZOS which were developed as part of this project.
The sparse CFD code GCCG was developed at the Institute for Software Technology and Parallel

Systems at the University of Vienna, Austria.

2.1 CHOLESKY

The sparse cholesky factorization of a symmetric positive definite sparse matrix A produces a lower
triangular matrix L such that A = LL” . This factorization is used in direct methods to solve systems

of linear equations. An example of the type of access pattern seen in CHOLESKY is depicted below:

do s = 1,nsu
do j = isu(s),isu(s+1)-1
snhead(j) = isu(s)
nafter(j) = isu(s+1) - 1 - j
enddo
enddo

The indirectly referenced loop bounds of the inner j loop vary across iterations of the outer i

loop. The Harwell-Boeing matrix BCSSTK30 was used as input for this benchmark [10].



2.2 DSMC3D

DSMC3D is a modification of the DSMC (Direct Simulation Monte Carlo) benchmark in 3 dimen-
sions. DSMC implements a simulation of the behavior of particles of a gas in space using the Monte
Carlo method [5]. An example of one of the access patterns occurring in this application is abstracted

below:

do i =1, NM
if (mcell(i)+1 .eq. ncell(i)) then
cellx(mcell(i)) = cellx(mcell(i)) + 1
endif
enddo

In the above accumulation into cellx, subscripted subscripts occur on both the left and right-
hand sides of assignment statements. Other more complex indirection patterns that we find in this
irregular code include the following segment excerpted from the SELECT subroutine:

k=int(rnd()*ic(2,n,nn))
1=ir(k)
k=int(rnd()#iscg(2,msc,mm))
m=ir (k)

do 200 j=1,3

vre(j)=pv(j,L1)-pv(j,m)
200 continue

2.3 EULER

EULER is an application which solves the Euler equations on an irregular mesh. The computation
is based on an indirectly referenced description of the grid. In addition, indirection is employed on
both sides of assignment statements. The following code abstract exemplifies this two-level pattern

of indirection:

do ng=1,ndegrp
do i=ndevec(ng,1),ndevec(ng,2)

nil = nde(i,1)
n2 = nde(i,2)
pw(ni,1) = pw(ni,1) + qw(n2,1)*eps(i)
pw(n2,1) = pw(n2,1) + quw(nl,1)*eps(i)
enddo
enddo



2.4 GCCG

GCCG is an example of a computational fluid dynamics solver. The access pattern is similar to that
found in finite element methods where the value of an element is determined by the contribution of
neighbors selected using subscripted subscripts. As a result, indirection occurs on the right-hand-side

of the computed expressions.

do nc=nintci,nintcf
direc2(nc)=bp(nc)*direci(nc)
-bs(nc)*direc1(lcc(nc,1))
-bw(nc)*direc1(lcc(nc,4))
-bl(nc)*direc1(lcc(nc,5))
enddo

2.5 LANCZOS

The lanczos algorithm with full reorthogonalization determines the eigenvalues of a symmetric ma-
trix [12]. LANCZOS is an implementation of the lanczos algorithm for sparse matrices. The key
computational elements are the calculation of a sparse matrix-vector product and the reorthogonal-
ization of a dense work matrix. Access patterns include subscripted subscripts on the right-hand-side

of assignment statements as the following excerpt demonstrates:

do j=1,a_nr

do k=ar(j),ar(j+1)-1
r(j)=r(j)+ad(k)*qac(k),i)
enddo

enddo

The matrix 1138 _BUS of Harwell-Boeing collection was used as input for this benchmark.

2.6 MVPRODUCT

MVPRODUCT is a set of basic sparse matrix operations including sparse matrix-vector multipli-
cation and the product and sum of two sparse matrices [3, 12]. The representation of the sparse
matrices employs two different schemes: compressed row storage (CRS) and compressed column

storage (CCS) [21]. The access pattern is demonstrated by the following code abstract:



do i=1,a_nr
do k=1,b_nc
do ja=ar(i),ar(i+1)-1
do jb=bc(k),bc(k+1)-1
if (ac(ja).eq.br(jb)) THEN
c(i,k)=c(i,k)
& + ad(ja)*bd(jb)
endif
enddo
enddo
enddo
enddo

Here indirection occurs on the right-hand-side of the computed expressions. The matrix BC-

SSTK14 from the Harwell-Boeing collection has been used as input to this benchmark.

2.7 NBFC

The calculation of non-bonded forces forms a key element of many molecular dynamics computations
[8]. NBFC computes an electro-static interaction between particles where the forces acting on an
atom are calculated from a list of neighboring atoms. Similar to the DSMC3D benchmark, the data
access pattern in this sparse code has indirection on both sides of the computed expressions:
do k = 1, ntimestep
do i = 1, natom
do j = inblo(i),inblo(i+1)-1
dx(jnb(j)) = dx(jnb(j)) - (x(i) - x(jnb(j)))
dx (i) = dx(i) + (x(1) - x(jnb(j)))
enddo

enddo
enddo

2.8 SpLU

SpLU computes the LU factorization of a sparse matrix. The LU factorization 1s used in several
methods which solve sparse linear systems of equations. The factorization of a matrix A results in
two matrices, L (lower triangular) and U (upper triangular), and two permutation vectors 7 and p

such that: Ay, = (LU)g;.



The pattern of access to arrays in SpLU includes indirectly referenced loop bounds across an

iteration space traversed by a loop induction variable:
do i=cptri(j),cptr2(j)
a(shift)=a(i)
r(shift)=r(i)
shift = shift + 1
enddo
SpLU is a right-looking sparse LU factorization based on the CCS data structure. This algorithm
is somewhat slower than the M A48 code from Harwell Subroutine Library [10], a left-looking standard
benchmark for factorization. The motivation for developing a right-looking algorithm derived from
the lack of significant parallelism in MA48. This led to the inclusion of the original C version of SpLU
in the suite of HPF-2 motivating applications. The version of SpLU included in our benchmark suite

is a Fortran implementation by the authors of the original HPF-2 version [2]. The sparse matrix

Ins_3937 from the Harwell-Boeing collection was used as input for the results reported in this paper.

3 Parallelizing Techniques and Transformations

Several new techniques have been developed and existing techniques employed to parallelize this

suite of sparse and irregular codes:
o Histogram Reductions
e Random Number Generator Substitution

e Proving Monotonicity of Index Arrays

Proving Ranges of Induction Variables Non-Overlapping
e Copy-in and Copy-out

e Loops with Conditional Exits

3.1 Histogram Reductions

The following code portrays a reduction on the array A which involves a loop-variant subscript

function f(¢,j).



do i=1,n

do j=1, m
k = £(1,3)
a(k) = a(k) + expression
enddo
enddo

Due to the loop-variant nature of the subscript function f, loop-carried dependences may be
present at run-time. This pattern occurs commonly in many codes, both sparse and non-sparse, and
is termed a histogram reduction [18, 14].

In our study of the benchmark suite we have found that histogram reductions occur in key
computational loops in all four of the benchmarks derived from the HPF-2 motivating suite: NBFC,
CHOLESKY, DSMC3D, and EULER. The parallelization of histogram reductions is based on a run-
time technique which depends on the associativity of the operation being performed. The Polaris
parallelizing restructurer recognizes and transforms histogram reductions [7].

The parallelizing transformation takes one of three forms: critical section, priwatized, expanded
Each approach 1s discussed and exemplified below. The language used in the examples is based on

IBM’s Parallel Fortran [13].

e Critical Section

The first approach involves the insertion of synchronization primitives around each reduction
statement, making the sum operation atomic. In our example the reduction statement would be

enclosed by a lock/unlock pair:

parallel loop i=1,n

do j=1, m
k = £(i,j)
call lock

a(k) = a(k) + expression
call unlock
enddo
enddo

This is an elegant solution on architectures which provide fast synchronization primitives.

e Privatized



In privatized reductions, duplicates of the reduction variable that are private to each processor
are created and used in the reduction statements in place of the original variable. The following

code exemplifies this transformation:

parallel loop i=1,n
private a_p(sz)

dofirst
a_p(l:sz) = 0
doevery
do j=1, m
k = £(1,3)
a_p(k) = a_p(k) + expression
enddo

dofinal lock
a(l:sz) = a(l:sz) + a_p(1l:sz)
enddo

Each processor executes the dofirst section of the parallel loop once at the beginning of their
slice of the iteration space. The doevery section of the loop is executed every iteration. The dofinal
section of the code is executed once by each processor after completion of its slice of the iteration

space. The lock argument to dofinal indicates that the code be enclosed in a critical section.

e Expanded

The third approach employs expansion to accomplish the same functionality as the privatizing
transformation. Rather than allocating loop-private copies of the reduction variable, the variable is
expanded by the number of threads participating in the computation. All reduction variables are
replaced by references to this new, global array, and the newly created dimension is indexed by the
processor number executing the current iteration.

The initialization and cross-processor sums take place in separate loops preceding and following
the original loop, respectively. In this approach there is no need for synchronization, and both loops

can be executed in parallel:

parallel loop j=1,threads
do i=1,n
a_e(i,j) =0
enddo
enddo



parallel loop i =1, n
private int tid = thread\_id()

do j=1, m
k = £(1,3)
a_e(k,tid) = a_e(k,tid) + expression
enddo
enddo

parallel loop i=1,n
do j=1,threads
a(i) = a(i) + a_e(i,j)
enddo
enddo

3.2 Random Number Generator Substitution

Two of the codes in our suite contain calls to pseudo-random number generators (RNGs) within
computationally important loops. Calls to routines of this type serialize a loop. Recent work by
Bailey and Mascagni involves the development and standardization of robust thread-parallel pseudo-
random number generators based on lagged Fibonacci series [19, 17]. RNGs such as these can be
used to replace single-threaded generators

We have come across the following cases involving RNGs in various codes in our test suites:

e Calls to single-threaded library routines
e Calls to single-threaded user routines of one of the following types

— linear congruential generators

— lagged Fibonacci generators

3.2.1 Single-threaded library routines

We have determined that calls to RNG library routines occur in two computationally important
loops in a test suite used in the evaluation of the FALCON MATLAB compiler [9]. In addition,
random() is called in INITTA_DO2000 in the Perfect Club benchmark MDG [4]. The CHOLESKY
benchmark in our suite also calls the rand() library routine in an important loop. In three of these

cases, the RNG call is the only factor preventing parallelization of the loop after application of the
9



techniques implemented in the current Polaris restructurer. In CHOLESKY, a compile-time analysis
of the array access pattern reveals a straightforward test which is sufficient to prove independence
if the random number generation can be parallelized (see Section 3.3). In each of these cases, the

loop-carried dependence can be broken by replacing these calls with a thread-parallel RNG.

3.2.2 Calls to single-threaded RNGs implemented in the program

Several codes in well-known test suites contain implementations of RNGs of various types. The
Perfect Club benchmark QCD, for example, contains the routines PRANF, LADD, and LMULT
which together implement a pseudo-random number generator. Similarly, the DSMC3D benchmark
in our sparse/irregular suite implements a linear congruential generator based on work described in
[15]. A third example occurs in the SPEC CFP95 benchmark su2cor which implements a lagged
Fibonacci generator as described in the introduction to this section.

Lagged Fibonacci generators such as that implemented in su2cor take the form of a recurrence
relation. Such relations can be automatically detected using pattern recognition techniques [1].
General techniques for solving linear recurrences of this type are well known [16], and closed-forms
for such recurrences can be computed at compile-time thereby breaking loop-carried dependences.

In cases where RNGs are not explicitly coded as linear recurrences, other techniques must be
employed. Currently we plan to develop a directive interface which can be used to identify RNGs.
This requires input from the programmer, and therefore the parallelization becomes semi-automatic.
Fully-automatic techniques which are based on the recognition of a stream of pseudo-random num-

bers at compile-time are under investigation.

3.3 Proving Monotonicity of Index Arrays

One of the major difficulties in automatically parallelizing sparse codes involves the analysis of
subscripted array subscripts. The use of subscripted subscripts normally causes data dependence

tests to draw overly conservative conclusions. The following portrays an example of such patterns:

doi=1,n

10



k = ia(i)
a(k) = ...
end do
In the general case the subscript array ia must contain distinct indices if the outermost ¢ loop

1s to be executed as a doall loop. Another pattern which occurs commonly in our suite involves the

use of subscripted array subscripts in loop bounds:

doi=1,n

do j = ia(i), ia(i+1)-1
a(j) = ...

end do

end do

To parallelize the outermost loop in this case, the range [ia(i),a(i + 1) — 1] must be non-
overlapping for all 7. Although this condition may not hold generally, we have found that the index
arrays in several of our sparse codes are monotonic in nature. This is due to the fact that matrices
in sparse codes are often represented in a row-wise or column-wise format where the values of non-
zero elements of the matrix are stored in a one dimensional array and pointers to the first and last
elements of each row or column are stored in an index array. When this representation is used, the
index array is non-decreasing.

The analysis of such access patterns has been considered difficult to accomplish at compile-time.
However, using a combination of static, compile-time analysis and simple run-time tests, it is possible
to prove that these index arrays are non-decreasing. In CHOLESKY, for example, it can be statically
proven that the index array isu (initialized in SPARCHOL_GOTO290) is non-decreasing. This in
turn is sufficient to prove that SPARCHOL_DO1017 can be executed as a doall loop.

In cases where the index array is read from input, it suffices to test that ia(i+1).ge.ia(i) for
i = 1,n to prove that the ranges do not overlap. As mentioned earlier, the data representation
employed in the codes studied in our suite guarantees that n = m + 1, where n is the size of the
index array and m is the number of columns or rows. In practice n << «, where « 1s the number

of non-zero entries in the matrix, and the overhead of this test is small.

11



When possible, this test should be inserted as part of the initial input operation. However, since
this loop is essentially a reduction across ¢a, it can also be executed in parallel. Using techniques
for handling loops with conditional exits discussed in Section 3.6, the loop execution time may be
decreased even further.

We have found this pattern occurs in key computational loops in both CHOLESKY and SpLU.

3.4 Proving Ranges of Induction Variables Non-Overlapping

The most time consuming loop in SpLU involves access to arrays via an induction variable which
is conditionally incremented. Similar patterns involving induction variables occur in DSMC3D. In
both of these cases, static analysis of the code reveals conditions which can be tested at run-time
to prove that ranges are independent (non-overlapping). Consider the following example abstracted

from SpLU DPFAC_DO50:

do 20 i=1,n
ia_2(i) = ia_1(1)
20 continue
do 100 k=1,n
shift=mod(k,2)*1fact+1
do 50 j=k+1,n
cl=shift
do 60 i=ia_1(j),ia_2(j)
a(shift)=a(i)
shift=shift+1
60 continue
c2=shift-1
if (£fill-in) then
c2=c2+1
a(shift:shift+positive_inc)= ...
shift=shift+positive_inc
endif
do 95 i=ia_2(j)+1,ia_1(j+1)-1
a(shift)=a(i)
shift=shift+1

95 continue
ia_1(j)=c1
ia_2(j)=c2

50 continue

ia(n+1)=shift
100 continue

12



Loop 100 is the outermost loop, and is executed for the n columns in array a. ia_1 and ia_2 are
index arrays. shift 1s an induction variable which 1s also used as an index into a. Two facts are
sufficient to show that the do_50 loop may execute in parallel: one, for each j in do 50, the range of
shift must not overlap the range ia_1(j),7a_1(j + 1) — 1 for iterations of do_50 executed on other

processors’; and two, the range of shift must not overlap the same range of shift for iterations

executed on other processors?.

In order to prove these two points we must first determine that za_1 and ia_2 are non-decreasing.
These index arrays are reassigned in each iteration of do_50, thereby complicating the analysis of
the access pattern. However, it is possible to determine statically at compile time simple conditions
under which these arrays will be non-decreasing. First, note that the induction variable shift is
never decremented in the loop. It is conditionally incremented under the “fill-in” condition by a
positive amount. Likewise, the initial conditions (loop 20) guarantee that do_60 will execute at
least one iteration. Thus, one of the invariant conditions of this loop is that the induction variable
shift is strictly increasing. If ta_1 and ia_2 are initially non-decreasing, by induction this invariant
condition is sufficient to guarantee that they will remain non-decreasing across the entire execution
of the outermost loop 100. Thus, our task of proving that these index arrays are non-decreasing
has been reduced to the complexity of executing the test ia(i+1).ge.ia(i) for i = 1,n once at
run-time.

As a side-effect of this analysis we have proven that no output dependences exist across iterations
of the do_50 loop. This is a result of the fact that shift is strictly increasing in do_50.

Given that za_1 and za_2 are non-decreasing, the next step is to show that for each j in do_50, the
range of shift does not overlap the range [fa_1(j),¢a_1(j + 1) — 1] for iterations of do_50 executed
on other processors (in effect, we are proving that there are no flow or anti-dependences across
iterations of do_50). This can be accomplished using a simple test which compares the upper bound

of shift to the lower bound of ia_1 and the lower bound of shift to the upper bound of ia_1. As

!T.e., no flow or anti-dependences are present
2I.e., no output dependences

13



before, the presence of a conditional “fill-in” increment to shift complicates the analysis. However,
we can use an estimate of the maximum value of shift by determining an upper bound across the
entire iteration space of the do_50 loop. Based on the initial conditions and the strictly increasing
nature of shift, ia_2(j) > ta_1(j). Thus we know the tripcount of do_60, and we can conservatively
assume that the “fill-in” is always true. Together these facts lead to the following run-time test to

confirm the non-overlapping nature of reads and writes to a:

min_i=ia(k+1)
max_i=ia(n+1)-1
min_shift=shift
max_shift=shift+(max_i-min_i)+((n-k)*positive_inc)
if(min_shift.gt.max_i .or. max_shift.lt.min_i) then
parallel=.true.
else
parallel=.false.
end if

This test is placed outside the do_50 loop, and as a result incurs little overhead. When it is true,
do_50 may be executed in parallel. When false, it must (conservatively) be executed serially. What
this test actually proves is that writes to a are independent of reads to a across all iterations of

do_50. This concludes the proof that iterations of do_50 are independent.

3.5 Copy-in and Copy-out

After the identification of monotonicity in index arrays and the proof that induction variables have
non-overlapping ranges, it is often necessary to break remaining loop-carried anti and output de-
pendences by privatizing both scalar and array variables which are defined and used within a single
iteration [22]. ITn DSMC3D COLLMR_DO100, for example, variables in the /elast/ common block
were privatized. Similarly, several variables in DPFAC_DO50 in SpLU required privatization. How-
ever, many such variables have initial values which must be copied into each processor’s privatized
copy of the variable prior to the start of parallel execution. This requires an extension to the existing
techniques implemented in Polaris.

Corresponding to this “copy-in”, as it is called, is an operation in which variables’ values are

14



copied out on the final iteration of each processors’ slice of the iteration space. Termed “copy-out”,
this transformation is necessary whenever local variables have a last value which 1s used outside the

parallel region.

3.6 Loops with Conditional Exits

In various cases in our test suite, while loops and loops with multiple exits are used to conditionally
construct and manipulate data structures. Such loops present difficulties in parallelization due to
side-effects of iterations which are executed in parallel but would not be executed serially. However,
certain types of operations such as reductions can be parallelized despite the presence of side-effects.
As discussed in Section 3.1, this is possible for associative operations such as histogram reductions
if the reduction variable is either privatized or expanded.

One difficulty which arises when parallelizing loops with conditional exits 1s the need for each
processor to “flush” its remaining iterations once the exit has been taken. On the SGI Challenge no
mechanism is provided to explicitly take an early exit from a parallel loop. In order to provide an
early exit, we strip-mine the loop by creating a new, outer loop which executes one iteration on each
processor. In the inner loop, iterations are explicitly interleaved so that processors execute relatively
small slices of the iteration space. This enables exits to be detected with an efficiency proportional
to the size of each slice. A global, shared variable is used to store the minimum iteration in which
the break condition is true. Any iteration greater than this minimum will take an early exit out of

the loop. The following depicts this transformation:

geti = n+i
stagesize = blocksize * maxproc
do 100 k = 1, maxproc
do j = (k-1)#blocksize+1, n, stagesize
do i = j, j+blocksize-1
if (i > geti ) then goto 100

if ( a(i) ) then
call lock
if (i < geti ) then geti =1
call unlock
end if

15



end do
end do
100 end do

This transformation involves the following five steps:

1. The iteration space is divided into stages.

2. Each stage is divided into blocks with one block assigned per processor. For simplicity, we
assume here that the iteration space can be evenly divided by the blocksize.

3. Each processor goes through all stages; at each stage it executes the iterations in the block
assigned to it.

4. Once a processor finds the exit condition true, it sets get: atomically to its current iteration.
Note that once geti is set, 1t can only be reset to iterations less than get: due to the if (i <
geti) statement.

5. If a processor finds that it 1s working on an iteration beyond geti, it will exit to 100, thereby
flushing its remaining iterations.

Since we confine ourselves to privatizable associative operations we do not need to provide “roll-

back” functionality to restore prior state. This greatly reduces the overhead of the transformation.

4 Results

Polaris | PFA | Manual Polaris PFA Manual
Benchmark Tseq Thar | Tpar Tpar | Speedup | Speedup | Speedup
CHOLESKY 4:25 6:42 | 4:20 3:40 0.66 1.02 1.20
DSMC3D 8:02 6:35 | 7:53 1:45 1.22 1.02 4.95
EULER 5:03 2:34 | 4:56 1.97 1.02
GCCG 12:19 1:27 | 1:57 8.49 6.32
LANCZOS 14:28 2:01 | 1:58 7.17 7.36
MVPRODUCT 7:57 1:42 | 1:11 4.68 6.72
NBFC 6:15 1:15 | 6:20 5.00 0.99
SpLU 3:54 15:25 | 3:44 1:01 0.25 1.04 3.84

Table 2: Speedups: PFA, Polaris, and Manual

Table 2 presents a comparison of the speedups obtained by Polaris with those of the commercial
parallelizing compiler PFA| provided by SGI. The programs were executed in real-time mode on
eight processors on an SGI Challenge with 150 MHz R4400 processors. Figure 2 shows that Polaris

delivers, in many cases, substantially better speedups than PFA.
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The table also portrays additional speedups obtained using new techniques discussed in Section 3.
In these cases the techniques were manually implemented and the resulting transformed program
executed in parallel.

In general our results indicate that histogram reductions are one of the most important trans-
formations applied in our suite. However, we have determined that there are both cases where the
performance of the transformed codes is excellent, and other cases where we obtain relatively poor
speedups. The reasons behind this variance in the performance of histogram reductions is under
investigation.

Other techniques which proved crucial to the process of parallelization include both sophisticated
analysis of index array and induction variable access patterns, and the substitution of pseudo-random
number generators.

In the following sections, techniques applied to each benchmark both manually and automatically

will be outlined and compared to those applied by PFA.

4.1 NBFC

NBFC contains one computationally key loop which accounts for over 97% of the sequential execution
time. Both histogram and single-address reductions occur in the loop. When a given array is involved
in both types of reduction statement, it may be parallelized by applying the histogram reduction
transformation at all reduction sites involving the array. The histogram reduction technique was
sufficient to parallelize this loop, and excellent speedups were obtained. PFA, however, does not

implement histogram reductions and therefore achieved no speedup on this benchmark.

4.2 CHOLESKY

The following techniques were applied to CHOLESKY:

e Histogram reductions
e Loops with conditional exits

e Proving monotonicity of index arrays
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e Random number generator substitution

Histogram reductions are performed in the main update loop indexed by the variable kk in
the UPDATE_DO#3. This loop accounts for approximately 20% of the serial execution time. The
transformation, however, did not yield significant speedups. This is due to the additional overhead in-
curred during the initialization and cross-processor reduction phases of the expanded transformation
employed. An alternative approach based on the privatizing transformation is under investigation.

Loops with conditional exits occur in GENQMD_DO400, UPDATE_DO#2, and UPDATE_DO#-6.
The transformation discussed in Section 3.6 was applied to GENQMD_DO400, a loop which per-
forms a reduction across nodes to determine the minimum degree node. The reduction is terminated
by a threshold condition which causes an early exit to be taken from the loop. The loop accounts
for about 15% of the sequential execution time. Loop-level speedups of 1.6 were achieved on four
processors.

The techniques outlined in Section 3.3 apply in the SPARCHOL_DO1015 and SPARCHOL_DO1020
loops in CHOLESKY. Together these loops account for approximately 24% of the serial execution
time. A loop-level speedup of 2.84 was obtained in SPARCHOL_DO1020 on four processors.

The final transformation involved the substitution of a parallelized pseudo-random number gen-
erator for the library call in SPARCHOL_DO1015. This loop accounts for approximately 3.6% of
the serial execution time. The call to the random number generator is the primary work done in the
loop, and a loop-level speedup of 2.5 was achieved on eight processors.

Although both Polaris and PFA find a large number of loops parallel in this code, little high-level
parallelism 1s available due to the nature of the supernode algorithm employed. This is reflected
in the results for all three versions of the benchmark: Polaris, PFA, and the manually transformed

code. We continue to work on this benchmark.

4.3 DSMC3D

The following techniques were applied to DSMC3D:
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Histogram reductions
e Random number generator substitution

e Proving ranges of induction variables non-overlapping

Associative operations in list manipulation

Histogram reductions, discussed in Section 3.1, are important in several loops: INDEXM_DO300,
INDEXM_DO700, COLLMR_DO100, MOVE3_DO#3, and MOVE3_GOTO100. Together these five
loops account for approximately 84% of the sequential execution time. Random number genera-
tor substitution, discussed in Section 3.2, is important in COLLMR_DO100, MOVE3_GOTO100,
INIT3_DO605, and ENTER3_do4. Together these four loops account for almost 60% of the serial
execution time. There are two other loops which contain conditionally incremented induction vari-
ables, ENTER3_DO4 and INIT3_DO605. Together these loops account for approximately 7.56% of
the sequential execution time. Both of these loops are parallelizable using techniques outlined in
[18] for determining the closed-form of induction variables if the induction can be proven to be
monotonically increasing. However, the conditional increment poses a problem in that monotonicity
may not hold and the induction variable ranges may overlap as a result. Through static analysis
of the pattern in these loops, a simple run-time test can be abstracted which determines that the

induction variable ranges do not overlap and that the loops may be executed in parallel.

4.3.1 Associative operations in list manipulation

DSMC3D contains a while loop in the MOVE3 subroutine which accounts for approximately 35%
of the sequential execution time. This loop computes the movement phase, the first of three phases
executed each iteration of the outermost time-stepping loop. Molecules involved in the movement
phase are stored in lists comprised of two global arrays. These arrays are indexed almost without
exception by the loop induction variable. However, when a molecule leaves the flow, it is deleted
from the list and replaced by the last molecule in the list. This creates loop-carried dependences in
the do loop. However, the deletion of molecules can be deferred until after the entire list has been

processed [24, 6]. Based on this, the following transformation can be made:
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1=1

j=n
while (i < j) parallel loopi=1,n
if (cond(a(i)) then if (cond(a(i)) then
a(i) = a(j) a(i) = mark
]j=3-1 = endif
else enddo
i=1+1 call remove_marked(a)
endif
endwhile

The current molecule in a(i) is marked for later removal. After exit from the parallel loop,
marked elements are removed and the array a is packed. Effectively, the operation of removing and
replacing elements in the list is associative, and therefore can be parallelized [23].

The combination of these techniques in the loops mentioned above contributed to the overall
program speedup of 4.95 in the manually parallelized version. The speedups reported for Polaris
include the histogram reduction in MOVE3_DO#3. PFA, however, does not implement any of these

techniques and therefore achieved less of a speedup than Polaris, although both were low.

4.4 EULER

EULER contains five computationally important loops: DFLUX_DO100, DFLUX_DO200, EFLUX_DO100,
EFLUX_DO200, and PSMOO_DO20. Together these loops account for over 70% of the serial ex-
ecution time of the program. In all five loops, the histogram reduction transformation is the only
transformation necessary to parallelize the loop. Although the speedup for this benchmark is ap-
proximately two, actual loop-level speedups of the transformed reduction loops are quite good (e.g.,

3 on 4 processors).

Two factors contributed to the lack of overall program speedup: first, all transformations in-
volved the use of expanded reductions because, based on our study of other codes in the Perfect and
SPEC benchmark suites, we have empirically determined that expansion is the most efficient trans-
formation on the SGI. However, no appreciable speedups could be obtained in the initialization and

cross-processor reduction loops. Secondly, the transformed reduction loops incurred an overhead
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of between 10% and 30% in execution time. Together these factors reduced the overall program
speedup by a factor of approximately two.

In investigating the reasons behind these results, profiling tools available on the SGI Power
Challenge were employed®. Based on hardware counters integrated into the R10000 CPU, events
such as cache misses, translation lookaside buffer (TLB) misses, cycle counts, etc. can be statistically
sampled during program execution. Initial study of the results of profiling experiments has revealed
that primary cache misses, secondary cache misses, and TLB misses all increased. Further evaluation
of these results is underway.

Despite the difficulties encountered with the implementation of histogram reductions in EULER,
the transformation resulted in an overall program speedup of two. No speedup was achieved with
PFA due to the fact that PFA does not recognize and solve histogram reductions. In comparison,

Polaris did somewhat, but only slightly, better.

4.5 GCCG

The primary access pattern in GCCG involves indirections which occur on the right-hand-sides of
assignment statements, as discussed in Section 2. These pose no particular dependence problem due
to the fact that the array locations are read but not written. Many reductions occur in GCCG, but
they are all scalar or single-address reductions in which the reduction variable 1s a single element of
an array. Current parallelizing technology is capable of recognizing and transforming such reductions

into parallel form. This fact is reflected in the speedup results for PFA as well as Polaris.

4.6 LANCZOS

LANCZOS presents a situation similar to that found in GCCG in that the primary access pattern in-
volves indirection on assignment statements’ right-hand-sides during a sparse matrix-vector product

operation. The reorthogonalization is computed using dense matrices, and arrays are accessed via

3Note that our timing experiments were conducted on the SGI Challenge
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loop indices. As a result, no loop-carried dependences prevent parallelization. This fact is reflected

in the good speedups achieved by both Polaris and PFA.

4.7 MVPRODUCT

MVPRODUCT has been implemented such that dense matrices result from the combination of sparse
matrices. Due to this fact, indirection arises only on the right-hand-sides of assignment statements.
This type of indirection poses no particular problem to parallelization, and the speedups achieved

by both PFA and Polaris reflect this fact.

4.8 SpLU

The parallelization of SpLU involved the following techniques:

e Proving monotonicity of index arrays
e Proving ranges of induction variables non-overlapping

e Copy-in and Copy-out

Although a loop with a conditional exit exists in the subroutine DPREORD, this subroutine was
not called during our experiments. Loop DPFAC_DO50 in SpLU accounts for almost 100% of the
serial execution time of the benchmark. As discussed in Section 3.3, it was first necessary to prove
that index arrays were non-decreasing, and from this fact it was possible to develop a run-time test
capable of proving the independence of induction variable ranges. The final transformation applied
in DPFAC_DO)0 involved the copy-in and copy-out of the privatized arrays a,r, cptrl and eptr2.

Neither PFA nor Polaris implement the functionality present in these three techniques, and the
corresponding speedups reflect this fact. Polaris, in particular, applied the histogram reduction

transformation to an inner loop with a low tripcount. This resulted in a significant slowdown.
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5

Conclusions

In our study of our sparse and irregular benchmark suite we have determined that indirection on

the right-hand-sides of assignment statements is not a hindrance to automatic parallelization. We

have also identified several new techniques which begin to point to the fact that, although much

work remains to be done, automatic parallelization of sparse and irregular codes seems feasible.
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