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� Introduction

Irregular memory access patterns have traditionally caused di�culties in the automatic detection

of parallelism� and in many cases parallelization is prevented� These problems are nonetheless

important in that a signi�cant fraction of current applications are irregular in nature�

Some work has been done in the past� but very few studies have been made of complete codes

����� This paper studies how well automatic parallelization techniques work on a collection of real

codes with sparse and irregular access patterns� In conducting this work� we have compared existing

technology in the commercial parallelizer PFA from SGI with the Polaris restructurer ���� In cases

where performance was poor� we have done manual analysis and determined the techniques necessary

for automatic parallelization�

	



� The Benchmark Suite

Serial exec
Benchmark Description Origin 
 lines �seconds�

CHOLESKY Sparse Cholesky Factorization HPF� 	��� ���
DSMC�D Direct Simulation Monte Carlo HPF� 	��� ���
EULER Euler equations on ��D grid HPF� 	��� ���
GCCG Computational �uid dynamics Vienna ��� ���
LANCZOS Eigenvalues of symmetric matrices Malaga ��� ���
MVPRODUCT Basic matrix operations Malaga ��� ���
NBFC Molecular dynamics kernel HPF� ��� ���
SpLU Sparse LU Factorization HPF� ��� ��	

Table 	� Benchmark Codes

Table 	 summarizes the eight codes in the benchmark suite employed in our experiments� The

suite consists of a collection of sparse and irregular application programs as well as several kernels

representing key computational elements present in sparse codes� Several of the benchmarks in

our suite are derived from the set of motivating applications for the HPF� e�ort �		�� Exceptions

include the kernels MVPRODUCT and LANCZOS which were developed as part of this project�

The sparse CFD code GCCG was developed at the Institute for Software Technology and Parallel

Systems at the University of Vienna� Austria�

��� CHOLESKY

The sparse cholesky factorization of a symmetric positive de�nite sparse matrix A produces a lower

triangular matrix L such that A � LLT � This factorization is used in direct methods to solve systems

of linear equations� An example of the type of access pattern seen in CHOLESKY is depicted below�

do s � ��nsu

do j � isu�s��isu�s�����

snhead�j� � isu�s�

nafter�j� � isu�s��� � � � j

enddo

enddo

The indirectly referenced loop bounds of the inner j loop vary across iterations of the outer i

loop� The HarwellBoeing matrix BCSSTK�� was used as input for this benchmark �	���
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��� DSMC�D

DSMC�D is a modi�cation of the DSMC �Direct Simulation Monte Carlo� benchmark in � dimen

sions� DSMC implements a simulation of the behavior of particles of a gas in space using the Monte

Carlo method ���� An example of one of the access patterns occurring in this application is abstracted

below�

do i � �� NM

if �mcell�i��� �eq� ncell�i�� then

cellx�mcell�i�� � cellx�mcell�i�� � �

endif

enddo

In the above accumulation into cellx� subscripted subscripts occur on both the left and right

hand sides of assignment statements� Other more complex indirection patterns that we �nd in this

irregular code include the following segment excerpted from the SELECT subroutine�

k�int�rnd���ic�	�n�nn��

l�ir�k�

k�int�rnd���iscg�	�msc�mm��

m�ir�k�

do 	

 j����

vrc�j��pv�j�l��pv�j�m�

	

 continue

��� EULER

EULER is an application which solves the Euler equations on an irregular mesh� The computation

is based on an indirectly referenced description of the grid� In addition� indirection is employed on

both sides of assignment statements� The following code abstract exempli�es this twolevel pattern

of indirection�

do ng���ndegrp

do i�ndevec�ng����ndevec�ng�	�

n� � nde�i���

n	 � nde�i�	�

pw�n���� � pw�n���� � qw�n	����eps�i�

pw�n	��� � pw�n	��� � qw�n�����eps�i�

enddo

enddo
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��� GCCG

GCCG is an example of a computational �uid dynamics solver� The access pattern is similar to that

found in �nite element methods where the value of an element is determined by the contribution of

neighbors selected using subscripted subscripts� As a result� indirection occurs on the righthandside

of the computed expressions�

do nc�nintci�nintcf

direc	�nc��bp�nc��direc��nc�

� �bs�nc��direc��lcc�nc����

� �bw�nc��direc��lcc�nc����

� �bl�nc��direc��lcc�nc���

enddo

��� LANCZOS

The lanczos algorithm with full reorthogonalization determines the eigenvalues of a symmetric ma

trix �	��� LANCZOS is an implementation of the lanczos algorithm for sparse matrices� The key

computational elements are the calculation of a sparse matrixvector product and the reorthogonal

ization of a dense work matrix� Access patterns include subscripted subscripts on the righthandside

of assignment statements as the following excerpt demonstrates�

do j���a�nr

do k�ar�j��ar�j�����

r�j��r�j��ad�k��q�ac�k��i�

enddo

enddo

The matrix 		�� BUS of HarwellBoeing collection was used as input for this benchmark�

��� MVPRODUCT

MVPRODUCT is a set of basic sparse matrix operations including sparse matrixvector multipli

cation and the product and sum of two sparse matrices ��� 	��� The representation of the sparse

matrices employs two di�erent schemes� compressed row storage �CRS� and compressed column

storage �CCS� ��	�� The access pattern is demonstrated by the following code abstract�
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do i���a�nr

do k���b�nc

do ja�ar�i��ar�i�����

do jb�bc�k��bc�k�����

if �ac�ja��eq�br�jb�� THEN

c�i�k��c�i�k�

� � ad�ja��bd�jb�

endif

enddo

enddo

enddo

enddo

Here indirection occurs on the righthandside of the computed expressions� The matrix BC

SSTK	� from the HarwellBoeing collection has been used as input to this benchmark�

��� NBFC

The calculation of nonbonded forces forms a key element of many molecular dynamics computations

���� NBFC computes an electrostatic interaction between particles where the forces acting on an

atom are calculated from a list of neighboring atoms� Similar to the DSMC�D benchmark� the data

access pattern in this sparse code has indirection on both sides of the computed expressions�

do k � �� ntimestep

do i � �� natom

do j � inblo�i��inblo�i�����

dx�jnb�j�� � dx�jnb�j�� � �x�i� � x�jnb�j���

dx�i� � dx�i� � �x�i� � x�jnb�j���

enddo

enddo

enddo

��� SpLU

SpLU computes the LU factorization of a sparse matrix� The LU factorization is used in several

methods which solve sparse linear systems of equations� The factorization of a matrix A results in

two matrices� L �lower triangular� and U �upper triangular�� and two permutation vectors � and �

such that� A�i�j � �LU �ij�
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The pattern of access to arrays in SpLU includes indirectly referenced loop bounds across an

iteration space traversed by a loop induction variable�

do i�cptr��j��cptr	�j�

a�shift��a�i�

r�shift��r�i�

shift � shift � �

enddo

SpLU is a rightlooking sparse LU factorization based on the CCS data structure� This algorithm

is somewhat slower than the MA�� code fromHarwell Subroutine Library �	��� a leftlooking standard

benchmark for factorization� The motivation for developing a rightlooking algorithm derived from

the lack of signi�cant parallelism in MA��� This led to the inclusion of the original C version of SpLU

in the suite of HPF� motivating applications� The version of SpLU included in our benchmark suite

is a Fortran implementation by the authors of the original HPF� version ���� The sparse matrix

lns ���� from the HarwellBoeing collection was used as input for the results reported in this paper�

� Parallelizing Techniques and Transformations

Several new techniques have been developed and existing techniques employed to parallelize this

suite of sparse and irregular codes�

� Histogram Reductions

� Random Number Generator Substitution

� Proving Monotonicity of Index Arrays

� Proving Ranges of Induction Variables NonOverlapping

� Copyin and Copyout

� Loops with Conditional Exits

��� Histogram Reductions

The following code portrays a reduction on the array A which involves a loopvariant subscript

function f�i� j��

�



do i���n

do j � �� m

k � f�i�j�

a�k� � a�k� � expression

enddo

enddo

Due to the loopvariant nature of the subscript function f � loopcarried dependences may be

present at runtime� This pattern occurs commonly in many codes� both sparse and nonsparse� and

is termed a histogram reduction �	�� 	���

In our study of the benchmark suite we have found that histogram reductions occur in key

computational loops in all four of the benchmarks derived from the HPF� motivating suite� NBFC�

CHOLESKY� DSMC�D� and EULER� The parallelization of histogram reductions is based on a run

time technique which depends on the associativity of the operation being performed� The Polaris

parallelizing restructurer recognizes and transforms histogram reductions ����

The parallelizing transformation takes one of three forms� critical section� privatized� expanded�

Each approach is discussed and exempli�ed below� The language used in the examples is based on

IBM�s Parallel Fortran �	���

� Critical Section

The �rst approach involves the insertion of synchronization primitives around each reduction

statement� making the sum operation atomic� In our example the reduction statement would be

enclosed by a lock�unlock pair�

parallel loop i���n

do j � �� m

k � f�i�j�

call lock

a�k� � a�k� � expression

call unlock

enddo

enddo

This is an elegant solution on architectures which provide fast synchronization primitives�

� Privatized

�



In privatized reductions� duplicates of the reduction variable that are private to each processor

are created and used in the reduction statements in place of the original variable� The following

code exempli�es this transformation�

parallel loop i���n

private a�p�sz�

dofirst

a�p���sz� � 


doevery

do j � �� m

k � f�i�j�

a�p�k� � a�p�k� � expression

enddo

dofinal lock

a���sz� � a���sz� � a�p���sz�

enddo

Each processor executes the dofirst section of the parallel loop once at the beginning of their

slice of the iteration space� The doevery section of the loop is executed every iteration� The dofinal

section of the code is executed once by each processor after completion of its slice of the iteration

space� The lock argument to dofinal indicates that the code be enclosed in a critical section�

� Expanded

The third approach employs expansion to accomplish the same functionality as the privatizing

transformation� Rather than allocating loopprivate copies of the reduction variable� the variable is

expanded by the number of threads participating in the computation� All reduction variables are

replaced by references to this new� global array� and the newly created dimension is indexed by the

processor number executing the current iteration�

The initialization and crossprocessor sums take place in separate loops preceding and following

the original loop� respectively� In this approach there is no need for synchronization� and both loops

can be executed in parallel�

parallel loop j���threads

do i���n

a�e�i�j� � 


enddo

enddo
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parallel loop i � �� n

private int tid � thread��id��

do j � �� m

k � f�i�j�

a�e�k�tid� � a�e�k�tid� � expression

enddo

enddo

parallel loop i���n

do j���threads

a�i� � a�i� � a�e�i�j�

enddo

enddo

��� Random Number Generator Substitution

Two of the codes in our suite contain calls to pseudorandom number generators �RNGs� within

computationally important loops� Calls to routines of this type serialize a loop� Recent work by

Bailey and Mascagni involves the development and standardization of robust threadparallel pseudo

random number generators based on lagged Fibonacci series �	�� 	��� RNGs such as these can be

used to replace singlethreaded generators�

We have come across the following cases involving RNGs in various codes in our test suites�

� Calls to singlethreaded library routines

� Calls to singlethreaded user routines of one of the following types

� linear congruential generators

� lagged Fibonacci generators

����� Single�threaded library routines

We have determined that calls to RNG library routines occur in two computationally important

loops in a test suite used in the evaluation of the FALCON MATLAB compiler ���� In addition�

random�� is called in INITIA DO���� in the Perfect Club benchmark MDG ���� The CHOLESKY

benchmark in our suite also calls the rand�� library routine in an important loop� In three of these

cases� the RNG call is the only factor preventing parallelization of the loop after application of the
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techniques implemented in the current Polaris restructurer� In CHOLESKY� a compiletime analysis

of the array access pattern reveals a straightforward test which is su�cient to prove independence

if the random number generation can be parallelized �see Section ����� In each of these cases� the

loopcarried dependence can be broken by replacing these calls with a threadparallel RNG�

����� Calls to single�threaded RNGs implemented in the program

Several codes in wellknown test suites contain implementations of RNGs of various types� The

Perfect Club benchmark QCD� for example� contains the routines PRANF� LADD� and LMULT

which together implement a pseudorandom number generator� Similarly� the DSMC�D benchmark

in our sparse�irregular suite implements a linear congruential generator based on work described in

�	��� A third example occurs in the SPEC CFP�� benchmark su�cor which implements a lagged

Fibonacci generator as described in the introduction to this section�

Lagged Fibonacci generators such as that implemented in su�cor take the form of a recurrence

relation� Such relations can be automatically detected using pattern recognition techniques �	��

General techniques for solving linear recurrences of this type are well known �	��� and closedforms

for such recurrences can be computed at compiletime thereby breaking loopcarried dependences�

In cases where RNGs are not explicitly coded as linear recurrences� other techniques must be

employed� Currently we plan to develop a directive interface which can be used to identify RNGs�

This requires input from the programmer� and therefore the parallelization becomes semiautomatic�

Fullyautomatic techniques which are based on the recognition of a stream of pseudorandom num

bers at compiletime are under investigation�

��� Proving Monotonicity of Index Arrays

One of the major di�culties in automatically parallelizing sparse codes involves the analysis of

subscripted array subscripts� The use of subscripted subscripts normally causes data dependence

tests to draw overly conservative conclusions� The following portrays an example of such patterns�

do i � �� n

	�



k � ia�i�

a�k� � ���

end do

In the general case the subscript array ia must contain distinct indices if the outermost i loop

is to be executed as a doall loop� Another pattern which occurs commonly in our suite involves the

use of subscripted array subscripts in loop bounds�

do i � �� n

do j � ia�i�� ia�i�����

a�j� � ���

end do

end do

To parallelize the outermost loop in this case� the range �ia�i�� ia�i � 	� � 	� must be non

overlapping for all i� Although this condition may not hold generally� we have found that the index

arrays in several of our sparse codes are monotonic in nature� This is due to the fact that matrices

in sparse codes are often represented in a rowwise or columnwise format where the values of non

zero elements of the matrix are stored in a one dimensional array and pointers to the �rst and last

elements of each row or column are stored in an index array� When this representation is used� the

index array is nondecreasing�

The analysis of such access patterns has been considered di�cult to accomplish at compiletime�

However� using a combination of static� compiletime analysis and simple runtime tests� it is possible

to prove that these index arrays are nondecreasing� In CHOLESKY� for example� it can be statically

proven that the index array isu �initialized in SPARCHOL GOTO���� is nondecreasing� This in

turn is su�cient to prove that SPARCHOL DO	�	� can be executed as a doall loop�

In cases where the index array is read from input� it su�ces to test that ia�i����ge�ia�i� for

i � ��n to prove that the ranges do not overlap� As mentioned earlier� the data representation

employed in the codes studied in our suite guarantees that n � m � 	� where n is the size of the

index array and m is the number of columns or rows� In practice n �� �� where � is the number

of nonzero entries in the matrix� and the overhead of this test is small�

		



When possible� this test should be inserted as part of the initial input operation� However� since

this loop is essentially a reduction across ia� it can also be executed in parallel� Using techniques

for handling loops with conditional exits discussed in Section ���� the loop execution time may be

decreased even further�

We have found this pattern occurs in key computational loops in both CHOLESKY and SpLU�

��� Proving Ranges of Induction Variables Non	Overlapping

The most time consuming loop in SpLU involves access to arrays via an induction variable which

is conditionally incremented� Similar patterns involving induction variables occur in DSMC�D� In

both of these cases� static analysis of the code reveals conditions which can be tested at runtime

to prove that ranges are independent �nonoverlapping�� Consider the following example abstracted

from SpLU DPFAC DO���

do 	
 i���n

ia�	�i� � ia���i�

	
 continue

do �

 k���n

shift�mod�k�	��lfact��

do 
 j�k���n

c��shift

do �
 i�ia���j��ia�	�j�

a�shift��a�i�

shift�shift��

�
 continue

c	�shift��

if �fill�in� then

c	�c	��

a�shift�shift�positive�inc�� ���

shift�shift�positive�inc

endif

do � i�ia�	�j����ia���j�����

a�shift��a�i�

shift�shift��

� continue

ia���j��c�

ia�	�j��c	


 continue

ia�n����shift

�

 continue
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Loop 	�� is the outermost loop� and is executed for the n columns in array a� ia 	 and ia � are

index arrays� shift is an induction variable which is also used as an index into a� Two facts are

su�cient to show that the do �� loop may execute in parallel� one� for each j in do ��� the range of

shift must not overlap the range ia 	�j�� ia 	�j � 	� � 	 for iterations of do �� executed on other

processors� � and two� the range of shift must not overlap the same range of shift for iterations

executed on other processors� �

In order to prove these two points we must �rst determine that ia 	 and ia � are nondecreasing�

These index arrays are reassigned in each iteration of do ��� thereby complicating the analysis of

the access pattern� However� it is possible to determine statically at compile time simple conditions

under which these arrays will be nondecreasing� First� note that the induction variable shift is

never decremented in the loop� It is conditionally incremented under the ��llin� condition by a

positive amount� Likewise� the initial conditions �loop ��� guarantee that do �� will execute at

least one iteration� Thus� one of the invariant conditions of this loop is that the induction variable

shift is strictly increasing� If ia 	 and ia � are initially nondecreasing� by induction this invariant

condition is su�cient to guarantee that they will remain nondecreasing across the entire execution

of the outermost loop 	��� Thus� our task of proving that these index arrays are nondecreasing

has been reduced to the complexity of executing the test ia�i����ge�ia�i� for i � ��n once at

runtime�

As a sidee�ect of this analysis we have proven that no output dependences exist across iterations

of the do �� loop� This is a result of the fact that shift is strictly increasing in do ���

Given that ia 	 and ia � are nondecreasing� the next step is to show that for each j in do ��� the

range of shift does not overlap the range �ia 	�j�� ia 	�j � 	� � 	� for iterations of do �� executed

on other processors �in e�ect� we are proving that there are no �ow or antidependences across

iterations of do ���� This can be accomplished using a simple test which compares the upper bound

of shift to the lower bound of ia 	 and the lower bound of shift to the upper bound of ia 	� As

�I�e�� no �ow or anti�dependences are present
�I�e�� no output dependences
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before� the presence of a conditional ��llin� increment to shift complicates the analysis� However�

we can use an estimate of the maximum value of shift by determining an upper bound across the

entire iteration space of the do �� loop� Based on the initial conditions and the strictly increasing

nature of shift� ia ��j� � ia 	�j�� Thus we know the tripcount of do ��� and we can conservatively

assume that the ��llin� is always true� Together these facts lead to the following runtime test to

con�rm the nonoverlapping nature of reads and writes to a�

min�i�ia�k���

max�i�ia�n�����

min�shift�shift

max�shift�shift��max�i�min�i����n�k��positive�inc�

if�min�shift�gt�max�i �or� max�shift�lt�min�i� then

parallel��true�

else

parallel��false�

end if

This test is placed outside the do �� loop� and as a result incurs little overhead� When it is true�

do �� may be executed in parallel� When false� it must �conservatively� be executed serially� What

this test actually proves is that writes to a are independent of reads to a across all iterations of

do ��� This concludes the proof that iterations of do �� are independent�

��� Copy	in and Copy	out

After the identi�cation of monotonicity in index arrays and the proof that induction variables have

nonoverlapping ranges� it is often necessary to break remaining loopcarried anti and output de

pendences by privatizing both scalar and array variables which are de�ned and used within a single

iteration ����� In DSMC�D COLLMR DO	��� for example� variables in the �elast� common block

were privatized� Similarly� several variables in DPFAC DO�� in SpLU required privatization� How

ever� many such variables have initial values which must be copied into each processor�s privatized

copy of the variable prior to the start of parallel execution� This requires an extension to the existing

techniques implemented in Polaris�

Corresponding to this �copyin�� as it is called� is an operation in which variables� values are

	�



copied out on the �nal iteration of each processors� slice of the iteration space� Termed �copyout��

this transformation is necessary whenever local variables have a last value which is used outside the

parallel region�

��� Loops with Conditional Exits

In various cases in our test suite� while loops and loops with multiple exits are used to conditionally

construct and manipulate data structures� Such loops present di�culties in parallelization due to

sidee�ects of iterations which are executed in parallel but would not be executed serially� However�

certain types of operations such as reductions can be parallelized despite the presence of sidee�ects�

As discussed in Section ��	� this is possible for associative operations such as histogram reductions

if the reduction variable is either privatized or expanded�

One di�culty which arises when parallelizing loops with conditional exits is the need for each

processor to ��ush� its remaining iterations once the exit has been taken� On the SGI Challenge no

mechanism is provided to explicitly take an early exit from a parallel loop� In order to provide an

early exit� we stripmine the loop by creating a new� outer loop which executes one iteration on each

processor� In the inner loop� iterations are explicitly interleaved so that processors execute relatively

small slices of the iteration space� This enables exits to be detected with an e�ciency proportional

to the size of each slice� A global� shared variable is used to store the minimum iteration in which

the break condition is true� Any iteration greater than this minimum will take an early exit out of

the loop� The following depicts this transformation�

geti � n��

stagesize � blocksize � maxproc

do �

 k � �� maxproc

do j � �k����blocksize��� n� stagesize

do i � j� j�blocksize��

if � i � geti � then goto �



���

if � a�i� � then

call lock

if � i � geti � then geti � i

call unlock

end if

���

	�



end do

end do

�

 end do

This transformation involves the following �ve steps�

	� The iteration space is divided into stages�

�� Each stage is divided into blocks with one block assigned per processor� For simplicity� we
assume here that the iteration space can be evenly divided by the blocksize�

�� Each processor goes through all stages� at each stage it executes the iterations in the block
assigned to it�

�� Once a processor �nds the exit condition true� it sets geti atomically to its current iteration�
Note that once geti is set� it can only be reset to iterations less than geti due to the if �i �

geti� statement�

�� If a processor �nds that it is working on an iteration beyond geti� it will exit to 	��� thereby
�ushing its remaining iterations�

Since we con�ne ourselves to privatizable associative operations we do not need to provide �roll

back� functionality to restore prior state� This greatly reduces the overhead of the transformation�

� Results

Polaris PFA Manual Polaris PFA Manual
Benchmark Tseq Tpar Tpar Tpar Speedup Speedup Speedup

CHOLESKY ���� ���� ���� ���� ���� 	��� 	���
DSMC�D ���� ���� ���� 	��� 	��� 	��� ����
EULER ���� ���� ���� 	��� 	���
GCCG 	��	� 	��� 	��� ���� ����
LANCZOS 	���� ���	 	��� ��	� ����
MVPRODUCT ���� 	��� 	�		 ���� ����
NBFC ��	� 	�	� ���� ���� ����
SpLU ���� 	���� ���� 	��	 ���� 	��� ����

Table �� Speedups� PFA� Polaris� and Manual

Table � presents a comparison of the speedups obtained by Polaris with those of the commercial

parallelizing compiler PFA� provided by SGI� The programs were executed in realtime mode on

eight processors on an SGI Challenge with 	�� MHz R���� processors� Figure � shows that Polaris

delivers� in many cases� substantially better speedups than PFA�
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The table also portrays additional speedups obtained using new techniques discussed in Section ��

In these cases the techniques were manually implemented and the resulting transformed program

executed in parallel�

In general our results indicate that histogram reductions are one of the most important trans

formations applied in our suite� However� we have determined that there are both cases where the

performance of the transformed codes is excellent� and other cases where we obtain relatively poor

speedups� The reasons behind this variance in the performance of histogram reductions is under

investigation�

Other techniques which proved crucial to the process of parallelization include both sophisticated

analysis of index array and induction variable access patterns� and the substitution of pseudorandom

number generators�

In the following sections� techniques applied to each benchmark both manually and automatically

will be outlined and compared to those applied by PFA�

��� NBFC

NBFC contains one computationallykey loop which accounts for over ��� of the sequential execution

time� Both histogram and singleaddress reductions occur in the loop� When a given array is involved

in both types of reduction statement� it may be parallelized by applying the histogram reduction

transformation at all reduction sites involving the array� The histogram reduction technique was

su�cient to parallelize this loop� and excellent speedups were obtained� PFA� however� does not

implement histogram reductions and therefore achieved no speedup on this benchmark�

��� CHOLESKY

The following techniques were applied to CHOLESKY�

� Histogram reductions

� Loops with conditional exits

� Proving monotonicity of index arrays
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� Random number generator substitution

Histogram reductions are performed in the main update loop indexed by the variable kk in

the UPDATE DO
�� This loop accounts for approximately ��� of the serial execution time� The

transformation� however� did not yield signi�cant speedups� This is due to the additional overhead in

curred during the initialization and crossprocessor reduction phases of the expanded transformation

employed� An alternative approach based on the privatizing transformation is under investigation�

Loops with conditional exits occur in GENQMD DO���� UPDATE DO
�� and UPDATE DO
��

The transformation discussed in Section ��� was applied to GENQMD DO���� a loop which per

forms a reduction across nodes to determine the minimumdegree node� The reduction is terminated

by a threshold condition which causes an early exit to be taken from the loop� The loop accounts

for about 	�� of the sequential execution time� Looplevel speedups of 	�� were achieved on four

processors�

The techniques outlined in Section ��� apply in the SPARCHOL DO	�	� and SPARCHOL DO	���

loops in CHOLESKY� Together these loops account for approximately ��� of the serial execution

time� A looplevel speedup of ���� was obtained in SPARCHOL DO	��� on four processors�

The �nal transformation involved the substitution of a parallelized pseudorandom number gen

erator for the library call in SPARCHOL DO	�	�� This loop accounts for approximately ���� of

the serial execution time� The call to the random number generator is the primary work done in the

loop� and a looplevel speedup of ��� was achieved on eight processors�

Although both Polaris and PFA �nd a large number of loops parallel in this code� little highlevel

parallelism is available due to the nature of the supernode algorithm employed� This is re�ected

in the results for all three versions of the benchmark� Polaris� PFA� and the manually transformed

code� We continue to work on this benchmark�

��� DSMC�D

The following techniques were applied to DSMC�D�
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� Histogram reductions

� Random number generator substitution

� Proving ranges of induction variables nonoverlapping

� Associative operations in list manipulation

Histogram reductions� discussed in Section ��	� are important in several loops� INDEXM DO����

INDEXM DO���� COLLMR DO	��� MOVE� DO
�� and MOVE� GOTO	��� Together these �ve

loops account for approximately ��� of the sequential execution time� Random number genera

tor substitution� discussed in Section ���� is important in COLLMR DO	��� MOVE� GOTO	���

INIT� DO���� and ENTER� do�� Together these four loops account for almost ��� of the serial

execution time� There are two other loops which contain conditionally incremented induction vari

ables� ENTER� DO� and INIT� DO���� Together these loops account for approximately ���� of

the sequential execution time� Both of these loops are parallelizable using techniques outlined in

�	�� for determining the closedform of induction variables if the induction can be proven to be

monotonically increasing� However� the conditional increment poses a problem in that monotonicity

may not hold and the induction variable ranges may overlap as a result� Through static analysis

of the pattern in these loops� a simple runtime test can be abstracted which determines that the

induction variable ranges do not overlap and that the loops may be executed in parallel�

����� Associative operations in list manipulation

DSMC�D contains a while loop in the MOVE� subroutine which accounts for approximately ���

of the sequential execution time� This loop computes the movement phase� the �rst of three phases

executed each iteration of the outermost timestepping loop� Molecules involved in the movement

phase are stored in lists comprised of two global arrays� These arrays are indexed almost without

exception by the loop induction variable� However� when a molecule leaves the �ow� it is deleted

from the list and replaced by the last molecule in the list� This creates loopcarried dependences in

the do loop� However� the deletion of molecules can be deferred until after the entire list has been

processed ���� ��� Based on this� the following transformation can be made�
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i � 	
j � n
while �i � j�

if �cond�a�i�� then
a�i� � a�j�
j � j  	 �

else
i � i � 	

endif
endwhile

parallel loop i � 	� n
if �cond�a�i�� then

a�i� � mark

endif
enddo
call remove marked�a�

The current molecule in a�i� is marked for later removal� After exit from the parallel loop�

marked elements are removed and the array a is packed� E�ectively� the operation of removing and

replacing elements in the list is associative� and therefore can be parallelized �����

The combination of these techniques in the loops mentioned above contributed to the overall

program speedup of ���� in the manually parallelized version� The speedups reported for Polaris

include the histogram reduction in MOVE� DO
�� PFA� however� does not implement any of these

techniques and therefore achieved less of a speedup than Polaris� although both were low�

��� EULER

EULER contains �ve computationally important loops� DFLUX DO	��� DFLUX DO���� EFLUX DO	���

EFLUX DO���� and PSMOO DO��� Together these loops account for over ��� of the serial ex

ecution time of the program� In all �ve loops� the histogram reduction transformation is the only

transformation necessary to parallelize the loop� Although the speedup for this benchmark is ap

proximately two� actual looplevel speedups of the transformed reduction loops are quite good �e�g��

� on � processors��

Two factors contributed to the lack of overall program speedup� �rst� all transformations in

volved the use of expanded reductions because� based on our study of other codes in the Perfect and

SPEC benchmark suites� we have empirically determined that expansion is the most e�cient trans

formation on the SGI� However� no appreciable speedups could be obtained in the initialization and

crossprocessor reduction loops� Secondly� the transformed reduction loops incurred an overhead
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of between 	�� and ��� in execution time� Together these factors reduced the overall program

speedup by a factor of approximately two�

In investigating the reasons behind these results� pro�ling tools available on the SGI Power

Challenge were employed�� Based on hardware counters integrated into the R	���� CPU� events

such as cache misses� translation lookaside bu�er �TLB� misses� cycle counts� etc� can be statistically

sampled during program execution� Initial study of the results of pro�ling experiments has revealed

that primary cache misses� secondary cache misses� and TLB misses all increased� Further evaluation

of these results is underway�

Despite the di�culties encountered with the implementation of histogram reductions in EULER�

the transformation resulted in an overall program speedup of two� No speedup was achieved with

PFA due to the fact that PFA does not recognize and solve histogram reductions� In comparison�

Polaris did somewhat� but only slightly� better�

��� GCCG

The primary access pattern in GCCG involves indirections which occur on the righthandsides of

assignment statements� as discussed in Section �� These pose no particular dependence problem due

to the fact that the array locations are read but not written� Many reductions occur in GCCG� but

they are all scalar or single�address reductions in which the reduction variable is a single element of

an array� Current parallelizing technology is capable of recognizing and transforming such reductions

into parallel form� This fact is re�ected in the speedup results for PFA as well as Polaris�

��� LANCZOS

LANCZOS presents a situation similar to that found in GCCG in that the primary access pattern in

volves indirection on assignment statements� righthandsides during a sparse matrixvector product

operation� The reorthogonalization is computed using dense matrices� and arrays are accessed via

�Note that our timing experiments were conducted on the SGI Challenge
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loop indices� As a result� no loopcarried dependences prevent parallelization� This fact is re�ected

in the good speedups achieved by both Polaris and PFA�

��� MVPRODUCT

MVPRODUCT has been implemented such that dense matrices result from the combination of sparse

matrices� Due to this fact� indirection arises only on the righthandsides of assignment statements�

This type of indirection poses no particular problem to parallelization� and the speedups achieved

by both PFA and Polaris re�ect this fact�

��� SpLU

The parallelization of SpLU involved the following techniques�

� Proving monotonicity of index arrays

� Proving ranges of induction variables nonoverlapping

� Copyin and Copyout

Although a loop with a conditional exit exists in the subroutine DPREORD� this subroutine was

not called during our experiments� Loop DPFAC DO�� in SpLU accounts for almost 	��� of the

serial execution time of the benchmark� As discussed in Section ���� it was �rst necessary to prove

that index arrays were nondecreasing� and from this fact it was possible to develop a runtime test

capable of proving the independence of induction variable ranges� The �nal transformation applied

in DPFAC DO�� involved the copyin and copyout of the privatized arrays a� r� cptr	 and cptr��

Neither PFA nor Polaris implement the functionality present in these three techniques� and the

corresponding speedups re�ect this fact� Polaris� in particular� applied the histogram reduction

transformation to an inner loop with a low tripcount� This resulted in a signi�cant slowdown�

��



� Conclusions

In our study of our sparse and irregular benchmark suite we have determined that indirection on

the righthandsides of assignment statements is not a hindrance to automatic parallelization� We

have also identi�ed several new techniques which begin to point to the fact that� although much

work remains to be done� automatic parallelization of sparse and irregular codes seems feasible�
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