Virtual Animation of Tomographic
V olumes on Multiprocessors

JR. Cozar
R. Asenjo
E.L. Zapata
April 1997
Technical Report No: UMA-DAC-97/09
Published in:

VIl Nat'l Symp. on Pattern Recognition and Image Analysis
Bellaterra (Barcelona), April 1997, pp. 329-334

University of Malaga

Department of Computer Architecture
C. Tecnologico = PO Box 4114 « E-29080 Malaga = Spain

Virtual Animation of Tomographic Volumeson
Multiprocessors

J.R. Cozar, R. Asenjo, E.L. Zapata
Dept. of Computer Architecture,
Complejo Politécnico
Universidad de Malaga
Apdo. 4114
E-29080 Méaga, Spain

e-mail: {julian, asenjo, ezapata}@ac.uma.es

Abstract

Three-dimensional Representation of the human body organs from data obtained by Comput-
erized Tomography (CT) is a technique used in radiologic diagnosis. In this paper we present a
technique for the generation of these views using massively parallel computers through the render-
ization of surfaces defined by voxel faces. The algorithmsdeveloped are generic in the sense that they
impose no restrictionsto the problem size and they are independent of the number of processors. The
efficiency of our parallel algorithms has been tested on a multiprocessor system based on the i860
processor, and a comparative study of the results obtained with the Blocks, Cyclic, and Multiple
Recursive Decomposition data distributionsis shown.

Key Words: Rendering, Parallel Processing, MRD, 3DVIEWNIX.

1 Introduction

The pictures obtained via CT [1] are a set of slices depicting intensity distributionsin a given region of
the human body along a set of parallel planes. Using segmentation techniques, we can extract those 3D
objects of interest. Visualization of these objectsisimproved if we apply 3D illumination, rotation and
opacity variation techniques.

The aim of thiswork is the generation of sequences of 3D objects’ views from data provided by CT,
see Fig.1. Generation of these views requires alarge amount of memory and computational power, so, if
the results are to be obtained in any reasonable period of time, use of parallelism is mandatory.

@ (b)

Figure 1. Example of an Human Skull Views

We have developed a parallel algorithm for generating the sequence of 3D views on message passing
parallel architectures with distributed memory. In order to find out which data distributionis best suited
for this problem the Blocks, Cyclic and Multiple Recursive Decomposition data distributions have been
implemented, and a comparative study of the resultsis presented.

As a starting point, sequential codes were extracted from 3DVIENIX [2], a software package that
provides a variety of sophisticated methods for visualizing, manipulating, and analyzing image data.
Furthermore, we use its environment to implement the user’sinterface.

Section 2 of thispaper isdevoted to the study of the sequential algorithm, giving abrief explanation of
the rendering process. In section 3, the parallelization of thisalgorithmis presented. Finally, in section
4, an evaluation of the efficiency or our algorithmsis done, and comparative results for the several data
distributionstried are shown.

2 The Sequential Algorithm

2.1 TheRendering Process

This section briefly overviews the rendering process. Rendering is a jargon word that has come to mean
“The collection of operations necessary to project a view of an object or a scene onto a view surface” .
The object islit and itsinteraction with a light source is calculated to produce a shaded version of the
scene.

The best way to break down the overall rendering processisto consider an object description through
anumber of coordinate spaces. |n each space, operationsare carried out. The different coordinate spaces
facilitate certain process and specifications.

To build up a scene, objects specified in a modeling coordinate system (Fig.2(a)) may have three-
dimensional transformations applied to them. This embeds the object in a word coordinate space, a
gpace common to all objectsin ascene (Fig.2(b)). In this space we also establish the position of the light
source, or sources, that illuminate the scene and a view reference.

The object istransformated into the view or eye coordinate space (Fig.2(c)) and it isin this space that
the various specifications concerning the view are made.

In the eye space two operations are performed: the culling (Fig.2(d)) and the hidden surface removal,
Fig.2(e). The culling operation only considers polygonsin their entirety for each object whilethe hidden
surface removal resolve the overlapping object problem.

Thefinal two operations carried out on the polygons are shading and rasterization (Figs.2(f) and (g))
usually in the three-dimensional screen space. Shading compares the orientation of each polygon with
the light source direction and assigns a shade to the interior of the polygon. Rasterization works out
which valueto alot to each pixel in the projection.

3 Parallelization of the Algorithm

Recently, numerous parallel algorithms have been devel oped for rendering. The most used strategy in the
paralel rendering algorithmsis the divide and conquer paradigm. The subdivisionscan be made either
in the object domain or in the image domain. The method we use is hybrid because we divide the data
domain (during the rendering) as well as the image domain (during the composition).

The key idea of the algorithm we present here is very simple: it divides the data in smaller sub-
volumes and distributes it among processors, renders them locally, and finally combines the resulting
images. The memory requirements are modest since each processor contains only a subset of the global
data. In this section we present the more frequently adopted alternatives for each stage in the parallel
rendering process, justifying the ones choosed by us.

Local coordinate space ‘World coordinate space

Modelling X, Define view
transformation reference
(a)
View space
Ye
Z,
s E
—<Q*> 5 T e

Z, Z

i View transform X, Perform culling

X,
(b) ©)

3D screen space

Y WS
Perspective Hidden surface

d) transform X, (e) removal
. 5 /
A
Shaded Rasterization
® ®

Figure 2: Stagesin the Rendering Process

3.1 Data Partitioning and L oad Balancing

There are lots of way to carry out this. For example, Neumann [3] compared the three basic data distri-
butions derived from splitting the volume with one, two or three perpendicular planes respectively. We
partitioned only one dimension (slices) since using two unnecessarily complicate the a gorithms with-
out a great improvement. The storage of the sparse volume is carried out through a compressed data
structure, so using three dimensionsis unfeasible.

3.2 Local Rendering of the Volume

Each processor renders its sub-volume locally, i.e., no communications are required during sub-volume
processing. Among the many rendering algorithms [4], we use a voxel projection agorithm because of
the initial data we have. In our paralel rendering algorithm we adopted the paradigm host/node. The
host, besides preparing and distributing the work among nodes and collecting the results, controls the
graphic user interface. The nodes carry out the renderization process itself. The way they create each
frame isthe following:

1. Receive data from Host
2. For each photogramin the sequence
2.1 For each opaqgue object
2.1.1 Process the object (to rotate & to project)
2.1.2 Compose the opaque buffersin Node O
2.1.3 Any translucent object ? —> Broadcast opaque buffers
2.2 For each translucent object
2.2.1 Process the object (to rotate & to project)
2.2.2 Compose the translucent buffersin Node O
2.2.3 AmI Node 0 ? —> send the photogramto Host

Opaque objects must be processed first because they can occlude the translucent objects.

3.3 Compounding thelmage

The last stage of the algorithm is the composition of al the partial views computed by the nodes in a
final image. The most used approaches are:

e Direct send: Neumann [3] use this approximation. Each computed pixel is directly sent to the
processor that has been assigned the image plane portion where the pixel islocated.

e Binary Composition: in each stage the processors are paired to form a new subimage according
to a binary tree structure. The final image is obtained after log » stages. One problem with this
method isthat the processors become inactive during the composition process.

e Binary swap composition [5]: we can exploit even more the parallelism if we generalize the fore-
going method. In each step of the reduction phase, the two processors involved in the composition
operation divide the image plane in two parts and each processor is responsible of one of them.

We used the binary composition because to take advantage of the binary swap composition, the com-
position procedure must be complex.

The sparsity of the image data can be exploited even more if the compositionis carried out only on
the portion of the image that is not background. For this purpose, each processor must keep arectangle,
aligned with the screen, that delimitsthis areain the image.

4 Evaluation

4.1 Complexity
A generic formulathat give us the complexity per photogramis:

N3 N3
O |opaqg- — +trans - —+ (a+ b+ ¢) -logn
n n

wherethetwo first terms correspond to computationsand thelast oneto communications. Inthisformula,
opaq and trans are the number of opaque and translucent objects respectively. N2 represents the three-
dimensionality of the objects. a, b and ¢ are communication time constants and are non null when we
have opague, tranglucent and both objects respectively. Finally, n is the number of processor elements
(PES).

e The computational terms mainly depends on the number of objects, if they are opaque and/or
translucent and its magnification, how many elements are used in the definition of the surfaces,
viewer’s position, and number of PEs.

Blocks (40563) | Cyclic (4211) | MDR(1D) (2337)
Node % % %
0 135 25,2 25
1 34,7 24,9 24,6
2 28,8 23,2 24,7
3 23 25 25,7

Table 1: Comparison of the balancing obtained with each distribution

e The communications dependsin a very sophisticated way on the class of the objects we have, its
shape and viewer’s position (determining the area of the rectangle that delimitates the projection),
frame size and PEs number (logarithmically).

The expression for the complexity when n = 1 correspondswith the sequential case, sincethe parallel
algorithm is a generalization of the first one.

4.2 Load Balancing

In Table 1 we show a comparison between the balancing obtained with the different data distributions
we've used. The given valuesare for a surface that represents the human skull (defined by 518.894 voxel
faces), when we use four nodes. For each node the percentage of elementsit receives for each distribution
isindicated. To clear the goodness of a distribution, the standard deviation in the number of received
elements per nodeis also included (in brackets).

In the table we can see how the MRD distributionis the best in balancing the use of the memory. The
cyclic, however, isthe best balancing the computational load. The surfaces are defined by three classes of
voxel faces and not alwaysall kindscome into computation. If we take alternative slices, the probability
of their elements belonging to different classesis higher. So, the different kinds of voxel faces are more
uniformity distributed among processors.

4.3 Comparison between Times for the Different Distributions

The times we present here were measured on the parallel supercomputer Paramid 16 x 860 [6]. Itis
composed by 16 nodes or TTM 200 boards, all of them consisting in an Intel i860-XP processor for the
computation purposes and an Inmos T805 transputer for the computations and/or communications ones.

In Fig.3 two graphics that summarize the results obtained for the different distributions are shown.
Thetimeisfor the generation of a sequence of frames of the human skull. Since the timefor the creation
of a photogram isnot constant, we've taken its average value. The size of the frame is 256 x 256 pixels.
The number of processors we've used is a power of two -1, 2, 4, and 8- so we can obtain the maximum
efficiency in the communication phases.

4.3.1 Communications

The general trend in the communication time isto grow with the number of processors (in alogarithmic
way) and with the size of the frame. The peak that appears in the blocks distribution is due to load
unbalancing. In the consecutive distributions (blocks and MRD) the area of the rectangle that contains
a portion of image not being background is smaller, and a lesser number of messages are sent since
elements of the volume that are placed near will be closein the projection.

=—a Blocks =—a Blocks
— 80.0

Cydic — Cydic
60 +—#MRD (1D) *—#MRD (1D)

Communication Time (s)
>
>

(8 Communication Time (b) Efficiencies
Figure 3: Performance of our Parallel Algorithm

4.3.2 Efficiency

The global efficiency of the algorithm decreases when we add new processors (increasing the volume
of communications) and with the load unbalancing. So, the best efficiency is achieved with the MRD
distribution (less communication costs and unbalancing). By the other hand, consecutive distributions
(blocks and MRD) results in a more efficient use of the cache since they hold a higher spatial locality
when the elements are projected.

Finally we note that the greater number of elementsis used in the definition of an object surface, the
better efficiency is achieved.

5 Conclusions

In thiswork we have studied the behavior of the blocks, cyclic and MRD distributionsin a global sense
for this particular type of problems. The best results were obtained using the MRD distribution and the
worst with the cyclic distribution. The blocks partition is between then, closer to the MRD than to the
cyclic. In fact, the MRD distributionis a generalization of the blocks distribution that gets optimal |oad
bal ancing when we work with sparse data structures.

References

[1] G.T. Herman. Image Reconstruction from Projections. The Fundamentals of Computerized Tomog-
raphy. Academic Press, 1980. Is

[2] J. Udupa, R. Goncalves, K.I. Narendula, D. Odhner, S. Samarasekeray S. Sharma. 3DVIEWNIX:
An Open, Transportable Software System for the Visualization and Analysis of Multidimensional,
Multimodality, Multiparametric Images. SPIE Proccedings, Vol.1897, 1991, pp. 47-58.

[3] U. Neumann. Parallel Volume-Rendering Algorithm Performance on Mesh Conected Multicomput-
ers. Proc. Parallel Rendering Symp., ACM, New York, 1993, pp. 253-259.

[4] A. Watt. 3D Computers Graphics. Ed. Addison-Wesley, 2nd edition, 1994.

[5] K. Mg JS. Painter, C.D. Hansen y M.F. Krogh. Parallel Volume Rendering Using Binary-Swap
Compositing. Computer Graphics and Aplications, Vol.14, n.4, 1994, pp. 59-68.

[6] R.Asenjo, M. Ujaldén. Manual Basico del Supercomputador Paralelo Paramid. Dpto. de Arquitec-
tura de Computadores, Universidad de Ma&aga, 1993.

