
HPF-2 Support for Dynamic Sparse Computations

R. Asenjo
O. Plata
J. Tourino
R. Doallo
E.L. Zapata

August 1998
Technical Report No: UMA-DAC-98/11

Published in:
11th Int’l Workshop on Languages and Compilers for Parallel Computing (LCPC’98)
Chapel Hill, North Carolina, pp. 230-246, August 7-9, 1998
      published by Springer-Verlag, Berlin, Germany, S. Chatterjee, J.F. Prins,
      L. Carter, J. Ferrante, Z. Li, D. Sehr and P.-C. Yew, Eds., LNCS no. 1656

University of Malaga
Department of Computer Architecture
C. Tecnologico  •  PO Box 4114  •  E-29080 Malaga  •  Spain



HPF�� Support for Dynamic Sparse

Computations�

R� Asenjo�� O� Plata�� J� Touri�no�� R� Doallo�� and E�L� Zapata�

� Dept� Computer Architecture� University of M�alaga� Spain
fasenjo�oscar�ezapatag�ac�uma�es

� Dept� Electronics and Systems� University of La Coru�na� Spain
fjuan�doallog�udc�es

Abstract� There is a class of sparse matrix computations� such as direct
solvers of systems of linear equations� that change the �ll�in �nonzero en�
tries� of the coe�cient matrix� and involve row	column operations �piv�
oting�� This paper addresses the problem of the parallelization of these
sparse computations from the point of view of the parallel language and
the compiler� Dynamic data structures for sparse matrix storage are an�
alyzed� permitting to e�ciently deal with �ll�in and pivoting issues� Any
of the data representations considered enforces the handling of indirec�
tions for data accesses� pointer referencing and dynamic data creation�
All of these elements go beyond current data�parallel compilation tech�
nology� Our solution is to propose a small set of new extensions to HPF�

to parallelize these codes� and to support part of the new capabilities on
a runtime library� This approach has been evaluated on a Cray T�E�
implementing� in particular� the sparse LU factorization�

� Introduction

Over the last decades� there have been major research e�orts in developing e��
cient parallel numerical codes for distributed�memory multiprocessors� emerging
the data�parallel paradigm as one of the most successful programming models�
Recently introduced parallel languages� such as CM�Fortran� Vienna�Fortran
���	� Fortran D �
�	 and de facto standard High�Performance Fortran �HPF
�
�	���	� follow this approach�

All these languages had initially focused on regular computations� that is�
well�structured codes that can be e�ciently parallelized at compile time using
simple data �and computation mappings� However� the situation is di�erent for
irregular codes� where data�access patterns and workload are usually known only
at runtime�
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A approach to handle irregular computations is based on extending the data�
parallel language with new constructs suitable to express non�structured paral�
lelism� With this information� the compiler can perform at compile time a num�
ber of optimizations� usually embedding the rest of them into a runtime library�
In Fortran D� for instance� the programmer can specify a mapping of array el�
ements to processors using another array� Vienna�Fortran� on the other hand�
lets programmers de�ne functions to specify irregular distributions� HPF�� ���	
provides a generalized block distribution �GEN�BLOCK� where the contiguous
array partitions may be of di�erent sizes� and an indirect distribution �INDI�
RECT� where a mapping array is de�ned to specify an arbitrary assignment of
array elements to processors�

A di�erent approach is based on runtime techniques� that is� the non�struc�
tured parallelism is captured and managed fully at runtime� These techniques
automatically manage programmer�de�ned data distributions� partition loop it�
erations� remap data and generate optimized communication schedules� Most of
these solutions are based on the inspector�executor paradigm ���	��	�

Current language constructs and the supportive runtime libraries are insu��
ciently developed� leading to low e�ciencies when they are applied to a wide set
of irregular codes� In the context of sparse computations� we found useful to in�
form the compiler not only about the data distribution� but also about how these
data are stored in memory� We will call distribution scheme the combination of
these two aspects �data structure � data distribution� We have developed and
extensively tested a number of pseudo�regular distribution schemes for sparse
problems� which combines natural extensions of regular data distributions with
compressed data storages ��	 ��	 ���	 ���	 ���	� These distribution schemes can be
incorporated to a data�parallel language �HPF in a simple way� The program�
mer can use them easily and obtain high e�ciencies from the parallelization of
irregular codes�

The above mentioned distribution schemes are faced to static sparse problems
�i�e� sparse matrices that do not change during computation� In this paper we
will discuss data structures and distributions in the context of dynamic sparse
matrix computations� involving �ll�in and pivoting operations� Direct methods
for solving sparse systems of linear equations� for instance� present this kind of
computations� Factorization of the coe�cient matrix may produce new nonzero
values ��ll�in� so that data structures must consider the inclusion of new el�
ements at runtime� Also� row and�or column permutations of the coe�cient
matrix are usually accomplished in order to assure numerical stability and limit
�ll�in� All these features make such sparse computations di�cult to parallelize�

The rest of the paper is organized as follows� In Section � we describe and
discuss the dynamic data distributions schemes we have tested to implement
e�cient parallel sparse codes involving pivoting and �ll�in� Speci�cally� a direct
method for the LU factorization is considered as a working example� In Section
� we describe our proposal to extend HPF�� for considering the above dynamic
distributions� Experimental results validating our approach are presented in Sec�
tion ��



do k � �� n
Find pivot�Aij

if �i �� k�
swap A�k� � � n� and A�i� � � n�

endif
if �j �� k�

swap A�� � n� k� and A�� � n� j�
endif
A�k � � � n� k� � A�k� � � n� k��A�k� k�
do j � k� �� n

do i � k � �� n
A�i� j� � A�i� j��A�i� k�A�k� j�

enddo
enddo

enddo

Fig� �� LU algorithm �General approach� right�looking version�

� Sparse Data Structures and Distributions

Distribution schemes are discussed in this section in the special context of dy�
namic sparse computations� where the �ll�in and pivoting problems are both a
key issue�

��� Sparse Data Structures

Usually� in order to save both memory and computation overhead� zero entries
of sparse matrices are not explicitly stored� A wide range of methods for storing
the nonzero entries of sparse matrices have been developed ��	�
�	� Here� we
will consider two di�erent approaches to store the sparse matrix� static data
structures and dynamic data structures�

Static data structures are the most used in Fortran codes� Common examples
are Compressed Row and Column Storages �CRS and CCS ��	� If the computa�
tion includes �ll�in entries and�or pivoting operations� even when we can simply
take some variation of a compressed format �such as CRS or CCS� in many
cases is preferably to use some other more complex and �exible data structure�
We have experimented with linked lists� and some other hybrid �semi�dynamic
data structures� depending on the type of data accesses we have to deal with�

To simplify the discussion� let us take our working example application� the
LU factorization of a sparse matrix� computed using a general method �
� 
�	�
These methods solve directly the sparse problem and shares the same loop struc�
ture of the corresponding dense code�

Fig� 
 shows an in�place code for the direct right�looking LU algorithm�where
an n�by�n matrix A is factorized� The code includes a row and column pivoting
operation �full pivoting to provide numerical stability and preserve sparsity�
Fig� � depicts the access patterns for the pivoting and updating operations on
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Fig� �� Pivoting �a� and updating �b� operations� and �ll�in �c� in right�looking LU

both matrices� L and U � and the generation of new entries� Note that e�cient
data accesses both by rows and columns are required�

The full�pivoting LU decomposition can store the coe�cient matrix into a
two�dimensional doubly linked list �see Fig� � �c� to make e�cient data accesses
both by rows and columns� Each item in such a dynamic structure stores not
only the value and the local row and column indices� but also pointers to the
previous and next nonzero element in its row and column �four pointers in total�

The complexity of the lists can be reduced if full pivoting is replaced by
partial pivoting� where only columns �or rows are swapped� This may imply
large memory and computation savings as we can use a simple list of packed
vectors� or a one�dimensional doubly linked list structure� to store the sparse
matrices� As shown in Fig� � �b� each linked list represents one column of the
sparse matrix� where its nonzero entries are arranged in growing order of the
row index� Each item of the list stores the row index� the matrix entry and two
pointers� A simpli�cation of the linked list is shown in Fig� � �a� where columns
are stored as packed vectors� and they are referenced by means of an array of
pointers� The list of packed vectors do not have pointers and� therefore� this
mixed structure requires much less memory space than the doubly linked list�

Compressed formats and lists of packed vectors are very compact and allow
fast accesses by rows or by columns to the matrix entries �but not both at the
same time� Linked lists are useful when more �exible data accesses are needed�
Two�dimensional lists� for instance� allow accesses to both rows and columns
with the same overhead� The �ll�in and pivoting issues are easily managed when
doubly linked lists are used� as they make easy the entry insertion and dele�
tion operations� In the case of compressed formats �CRS� CCS ��� or a list of
packed vectors� the �ll�in problem is more di�cult to solve� Compressed formats
also have the inconvenience of not allowing the pivoting operation �column�row
swapping in an easy way� This can be overcome by using some mixed data
structure� such as the list of packed vectors� or a linked list structure� Column
pivoting is then implemented by just interchanging pointer values�
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Fig� �� Packed vectors and linked lists as e�cient data structures for direct methods�
�a� List of packed vectors� �b� one�dimensional doubly linked list� �c� two�dimensional
doubly linked list� �d� local sparse matrix

Albeit their �exibility� linked lists have severe drawbacks� The dynamic mem�
ory allocation for each new entry� as well as the list traversing� are time�consuming
operations� Additionally� they consume more space memory than packed vec�
tors� But one major problem may be the memory fragmentation due to allo�
cation�deallocation of items� and spatial data locality loss� which may make
traversing rows and columns an expensive operation�

��� Dynamic Sparse Distribution Schemes

Four data storage schemes will be considered� LLCS �Linked List Column Stor�
age� LLRS �Linked List Row Storage� LLRCS �Linked List Row�Column Storage
and CVS �Compressed Vector Storage� the �rst three schemes to represent sparse
matrices� and the last one to represent sparse �one�dimensional arrays� The LLCS
storage scheme corresponds to the structure shown in Fig� � �b� that is� the ma�



�Doubly LLRS� LLCS �one�dimensional�
TYPE entry

INTEGER�� index
REAL�� value
TYPE �entry�� POINTER�� prev� next

END TYPE entry

�Doubly LLRCS �two�dimensional�
TYPE entry

INTEGER�� indexi� indexj
REAL�� value
TYPE �entry�� POINTER�� previ� prevj� nexti� nextj

END TYPE entry

TYPE ptr
TYPE �entry�� POINTER�� p

END TYPE ptr

TYPE �ptr�� DIMENSION�n��� pex

Fig� �� Fortran �� derived types for the items of LLRS� LLCS and LLRCS storage
schemes� and a de�nition of an array of pointers �pex� to these items

trix is represented by compressed columns stored as linked lists� Observe that in
this �gure the lists are doubly linked� but it can also be de�ned as singly linked�
in order to save memory overhead� The LLRS storage scheme is similar to the
LLCS scheme but considering linking by rows instead of columns� A combination
of compressed columns and rows representation� interlinked among themselves�
can be declared using the LLRCS storage scheme� as shown in Fig� � �c� As well
as with the other two schemes� the entries can be singly or doubly linked� Finally�
CVS scheme represents a sparse vector as two arrays and one scalar� the index
array� containing the indices of the nonzero entries of the sparse array� the value
array� containing the nonzero entries themselves� and the size scalar� containing
the number of nonzero entries�

Fig� � displays the Fortran �� derived types which may de�ne the corre�
sponding items of each kind of linked list� The �rst type corresponds to the
LLRS and LLCS schemes �doubly linked� indistinctly� and the second one to the
LLRCS scheme� doubly linked� The singly linked versions for these data types are
equivalent but without the prev pointers� The list itself is declared also through
a derived type� pex� which de�nes an array �or two of pointers to the above
items�

Once storage schemes have been de�ned� we can use the SPARSE directive to
specify that a sparse matrix �or sparse array is stored using a particular linked
list scheme� This directive was previously introduced� for instance in ��	 and in
���	� in the context of static sparse applications� Fig� � shows the BNF syntax
for the dynamic SPARSE directive� The �rst two data structures� LLRS and LLCS�
are de�ned by two arrays of pointers ��pointer�array�name�� which point to
the beginning and to the end� respectively� of each row �or column list� and a
third array ��size�array�name�� containing the number of elements per row
�for LLRS or per column �for LLCS� The option �link�spec� speci�es the type
of linking of the list data structure �singly or doubly� Regarding the LLRCS data
structure� we have four arrays of pointers which point to the beginning and to



�sparse�directive�����datatype��SPARSE ��sparse�content�� ���array�objects�
�datatype���� REAL j INTEGER
�sparse�content���� LLRS ��ll�spec��

j LLCS ��ll�spec��
j LLRCS ��ll��spec��
j CVS ��cvs�spec��

�ll�spec���� �pointer�array�name�� �pointer�array�name��
�size�array�name��
�link�spec�

�ll��spec���� �pointer�array�name�� �pointer�array�name��
�pointer�array�name�� �pointer�array�name��
�size�array�name�� �size�array�name��
�link�spec�

�cvs�spec���� �index�array�name�� �value�array�name�� �size�scalar�name�
�link�spec���� SINGLY j DOUBLY
�array�objects���� �sized�array�f��sized�array�g
�sized�array���� �array�name���subscript����subscript���

Fig� �� Syntax for the proposed HPF�
 SPARSE directive with dynamic data structures

the end of each row and each column of the sparse matrix� and two additional
arrays storing the number of elements per row and per column� respectively�

As an example� the following statement�

�HPF� REAL� DYNAMIC� SPARSE �CVS�vi� vv� sz���� V����

declares V as a sparse vector compressed using the CVS format� V will work in the
code as a place holder of the sparse vector� which occupies no storage� What is
really stored are the nonzero entries of the sparse array in vv� the corresponding
array indices in vi� and the number of nonzero entries in sz� The place holder
V actually provides an abstract object with which other data objects can be
aligned and which can then be distributed� The DYNAMIC keyword means that
the contents of the three arrays� vi� vv and sz� are determined dynamically� as
a result of executing a DISTRIBUTE statement�

The HPF directives DISTRIBUTE and ALIGN can be applied to sparse place
holders with the same syntax as in the standard� Distributing a sparse place
holder is equivalent to distributing it as if it was a dense array �matrix� For
instance� the statement�

�HPF� DISTRIBUTE�CYCLIC� ONTO mesh�� V

considers V as a dense array �not compressed� mapping this array on the pro�
cessors using the standard CYCLIC data distribution� and representing the dis�
tributed �local sparse arrays using the CVS compressed format�



!HPF$ ALIGN V(:) WITH A(*,:)
!HPF$ DISTRIBUTE(CYCLIC,CYCLIC) ONTO mesh:: A

vi 1 6 7 1043

V a 0 b c 0 d e 0 0 f

1 3 7

a b e

vi loc

vv loc

vi loc

vv loc

4 6 10

c d f

0 d 0 fc

2 4 6 8 10

a b e 0

1 3 5 7 9

0

PE #00, PE #10 PE #01, PE #11

vv a b c d e f sz 6

!HPF$ REAL, SPARSE (CVS(vi,vv,sz)):: V(10)

Fig� �� Alignment and distribution of a sparse array on a 
�
 processor mesh

In the case of the ALIGN directive� however� the semantics is slightly di�erent�
From the next example code�

REAL� DIMENSION��������� A

INTEGER� DIMENSION������ vi

REAL� DIMENSION������ vv

INTEGER�� sz

�HPF� PROCESSORS� DIMENSION������� mesh

�HPF� REAL� DYNAMIC� SPARSE �CVS�vi� vv� sz���� V����

�HPF� ALIGN V��� WITH A�	���

�HPF� DISTRIBUTE�CYCLIC�CYCLIC� ONTO mesh�� A

the �nonzero entries of V �that is� vv are aligned with the columns of A depend�
ing on the positions stored in the array vi� and not in the corresponding positions
in their own vv array �which is the standard semantics� Now� the DISTRIBUTE

directive replicates the V array over the �rst dimension of the processor array
mesh� and distributes it over the second dimension in the same way as the sec�
ond dimension of the A matrix� Observe that in this distribution operation� vi is
taken as the index array for the entries stored in vv� Fig� � shows the combined
e�ect of alignment�distribution for a particular case�

The combination of the directives SPARSE and DISTRIBUTE de�nes the dis�
tribution scheme of a sparse matrix� The variable V in the example code above
really works as a place holder for the sparse array� The SPARSE directive estab�
lishes the connection between the logical entity V and its actual representation
�compressed format� The bene�t of this approach is that we can use the stan�
dard HPF DISTRIBUTE and ALIGN directives applied to the array V and� at the
same time� store the array itself using a compressed format� In the rest of the
code� the sparse matrix is operated using directly its compressed format�



� Parallel Dynamic Sparse Computations

The SPARSE directive establishes a link between the sparse matrix �or array and
its storage scheme� From this point on� we can choose to hide the storage scheme
to programmers� and allow them to write the parallel sparse code using dense
matrix notations� The compiler will be in charge of translating these dense nota�
tions into parallel sparse codes taking into account the storage schemes speci�ed�
However� this approach supposes a great e�ort in compiler implementation �the
feasibility of its design is not clear� as well as the possibility of mixing in the
same code place holders �dense notations with real arrays� Bik and Wijsho� ��	
and Kotlyar and Pingaly ��
	 propose a similar approach� based on the auto�
matic transformation of a dense program� annotated with sparse directives� into
a semantically equivalent sparse code� However� the design of such compiler is
very complex� in such a way that no implementation of it is available for general
and real problems�

A di�erent approach is based on forcing programmers to use explicitly the
compressed storage structures common in sparse codes� and allow them to use
the place holders �dense notations only for aligning and distributing purposes�
Parallelism is constrained to the directives� If the parallel code is sequentially
compiled �that is� the HPF�� directives are taken as comments� the resulting
code would run properly�

��� Parallel Sparse LU Code

The general �direct right�looking LU factorization with partial pivoting �column
swapping will be considered� In most cases� partial pivoting leads to similar
numerical error results than full pivoting� but at a lower cost� However� a matrix
reordering stage �analyze stage should be added before the factorization stage�
This stage is in charge of updating the permutation vectors so as sparsity and
numerical stability are preserved in the subsequent factorization stage� A partial
numerical pivoting is however retained in the factorization stage to cover the
case that the selected pivot in the analyze stage turns to be unstable during
factorization�

Despite pivoting� the sparsity of the matrix usually decreases during the
factorization� In such case� a switch to a dense LU factorization may be advan�
tageous at some point of the computation� This dense code is based on Level �
BLAS� and includes numerical partial pivoting in order to assure stability� At
the switch point� the reduced sparse submatrix is scattered to a dense array�
The overhead of the switch operation is negligible �as the analyze stage and the
reduced dense submatrix appears distributed in a regular cyclic manner� The
threshold value used to switch from the sparse to the dense code was stated to

�� sparsity in our experiments�

Fig� � shows the declarative section of the parallel sparse LU code� using the
proposed extensions to HPF��� Matrix A is de�ned as sparse and stored using the
LLCS data structure� The arrays of pointers first and last indicate the �rst
and the last nonzero entry� respectively� of each column of A The array vsize



INTEGER� PARAMETER�� n�	


� dim��
INTEGER�� k� i� j
REAL�� maxpiv� pivot� amul� product
INTEGER�� actpiv� pivcol
TYPE �entry�� POINTER�� aux

TYPE �ptr�� DIMENSION�n��� first� last� vpiv
INTEGER� DIMENSION�n��� vsize

REAL� DIMENSION�n��� vcolv� vmaxval
INTEGER� DIMENSION�n��� vcoli
INTEGER�� size

�HPF� PROCESSORS� DIMENSION�dim��� linear
�HPF� REAL� DYNAMIC� SPARSE�LLCS�first� last� vsize� DOUBLY���� A�n�n�
�HPF� REAL� DYNAMIC� SPARSE�CVS�vcoli� vcolv� size���� VCOL�n�
�HPF� ALIGN iq��� WITH A����
�HPF� ALIGN vpiv��� WITH A����
�HPF� ALIGN vmaxval��� WITH A����
�HPF� ALIGN VCOL��� WITH A����
�HPF� DISTRIBUTE ��CYCLIC� ONTO linear�� A

Fig� �� Declarative section of the extended HPF�
 parallel sparse LU code

stores the number of nonzero entries on each column of A� The sparse array VCOL
is also de�ned� stored using the CVS format� This array contains the normalized
pivot column of A� calculated in each outer iteration of the algorithm�

The last sentence in the declaration section distributes cyclically the columns
of the sparse matrix A over a one�dimensional arrangement of abstract proces�
sors �the one�dimensional characteristic is not essential� Previously� three dense
arrays� iq� vpiv and vmaxval� were aligned with the columns of A� Therefore�
after the distribution of A� these three arrays also appear distributed in a cyclic
way over the processors� Finally� the sparse array VCOL is aligned with the rows
of A� Hence� after distributing A� VCOL is replicated over all the processors� At
each iteration of the main loop of the algorithm �loop k in Fig� 
� the owner
of the column k of A selects and updates on VCOL the pivot column� which is
consistently broadcast to the rest of processors to enable the subsequent parallel
submatrix update� Fig� � shows an example of this declaration�

Fig� � presents the rest of the parallel LU code� The �rst action corresponds to
the initialization of the array vpiv� which should point to the row that includes
the pivot� This loop is parallel and no communications are required� as both
arrays� vpiv and first� were aligned� Next� the outermost loop �loop k in Fig� 

starts� Previously� the analyze stage has calculated the value SwitchIter� from
which the sparse code switches to an equivalent dense one�

The �rst action inside the main loop corresponds to pivoting operations �col�
umn pivoting� in which we look for a stable pivot and� if possible� in agreement
with the recommended permutation vector iq �obtained in the analyze stage�
To ful�ll the �rst condition� the pivot should be greater than the maximum ab�
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Fig� �� Partitioning of most LU arrays	matrices on two processors� according to the
HPF declaration of Fig� � �an even number of columns for A� and that the outer loop
of the LU algorithm is in the fourth iteration� are assumed�

solute value of the pivot row times an input parameter called u �� � u � 
� The
maximum absolute value is calculated� using the Fortran �� MAXVAL�� intrinsic
funtion� evaluated over vmaxval vector� The update of vmaxval takes place on
the second INDEPENDENT loop which traverses the pivot row storing the ab�
solute value of each entry on vmaxval� These entries are candidates for pivot�
The ON HOME �vpiv�j�� directive tells the compiler that the processor owning
vpiv�j� will be encharged of iteration j� The RESIDENT annotation on the ON

HOME directive points out to the compiler that all variables referenced during the
execution of the directive�s body are stored in the local memory of the owner
of vpiv�j�� Thus� the compiler analysis is simpli�ed and more optimized code
may be generated�

Once the threshold maxpiv is obtained� the pivot is chosen in such a way
that its value is greater than the above threshold� and� on the other hand� spar�
sity is preserved by following the iq recommendations� This computation is� in
fact� a reduction operation� and consequently we annotate the corresponding
INDEPENDENT loop with such directive� This user�de�ned reduction operation is
indeed not considered by the HPF�� standard� but its inclusion would not add
any signi�cant complexity to the compiler implementation� Finally� after select�
ing the pivot� the swap�� routine is called to perform the permutation of the
current column k and the pivot column of matrix A�

After the pivoting operation� the pivot column is updated and packed into
the sparse VCOL array� This is computed by the owner of such column �ON HOME

directive� The ON HOME directive is annotated with the RESIDENT clause� in�



� ��� Initialization
�HPF� INDEPENDENT

DO j � �� n
vpiv�j�	p �� first�j�	p

END DO

� ��� Main loop LU
main
 DO k � �� SwitchIter

� ��� Pivoting
� ��� Candidates for pivot are selected and ���
�HPF� INDEPENDENT

DO j � k� n
�HPF� ON HOME �vpiv�j��� RESIDENT BEGIN

IF ��NOT�ASSOCIATED�vpiv�j�	p�� CYCLE
IF �vpiv�j�	p	index �� k� CYCLE
vmaxval�j� � ABS�vpiv�j�	p	value�

�HPF� END ON
END DO

� ��� ��� the maximum value is calculated
maxpiv � MAXVAL�vmaxval�k
n��
maxpiv � maxpivu

� ��� The pivot is chosen from the candidates
� ��� �reduction operation�

actpiv � �
pivcol � �

�HPF� INDEPENDENT� REDUCTION�actpiv�pivcol�
DO j � k� n

IF �vmaxval�j� � maxpiv �AND� iq�pivcol� � iq�j�� THEN
actpiv � vmaxval�j�
pivcol � j

END IF
END DO
IF�pivcol �� �� pivcol�k
IF�pivcol �� k� THEN

� ����� Columns are swapped
CALL swap�k�pivcol�first�last�vpiv�vsize�iq�

END IF

� ��� Pivot column is updated and packed
�HPF ON HOME �vpiv�k��� RESIDENT BEGIN

aux �� vpiv�k�	p
pivot � ���aux	value�
aux	value � pivot
aux �� aux	next
size � vsize�k���

DO i � �� size
aux	value � aux	valuepivot
vcolv�i� � aux	value
vcoli�i� � aux	index
aux �� aux	next

END DO
�HPF END ON

�

�

�

Fig� 	� Outline of an extended HPF�
 speci�cation of the parallel right�looking partial
pivoting LU algorithm ��rst part�

forming the compiler that all references by the processor that owns vpiv�k� are
local� As VCOL is a replicated array� any update made on it is communicated to
the rest of processors� Finally� the submatrix �k�
 � n� k�
 � n of A is updated�
Loop j runs over the columns of the matrix� and it is parallel� The NEW direc�
tive prevents the compiler from considering inexistent data dependences due to
variables that are actually private to each iteration�



�

�

�

� ��� Submatrix of A is Updated
�HPF� INDEPENDENT� NEW �aux�i�amul�product�
loopj
 DO j � k��� n
�HPF� ON HOME �vpiv�j��� RESIDENT BEGIN

aux �� vpiv�j�	p
IF ��NOT�ASSOCIATED�aux�� CYCLE
IF �aux	index �� k� CYCLE
amul � aux	value
vsize�j� � vsize�j���
vpiv�j�	p �� aux	next
aux �� aux	next

loopi
 DO i � �� size
product � �amulvcolv�i�
DO

IF ��NOT�ASSOCIATED�aux�� EXIT
IF �aux	index �� vcoli�i�� EXIT
aux �� aux	next

END DO
outer�if
 IF �ASSOCIATED�aux�� THEN

IF �aux	index �� vcoli�i�� THEN
aux	value � aux	value � product

ELSE
� ����� First or middle position insertion

CALL insert�aux�vcoli�i��product�first�j�	p�vsize�j��
IF �vpiv�j�	p	index �� aux	prev	index� vpiv�j�	p �� aux	prev

END IF
ELSE outer�if

� ����� End position insertion
CALL append�vcoli�i��product�first�j�	p�last�j�	p�vsize�j��
IF ��NOT�ASSOCIATED�vpiv�j�	p�� vpiv�j�	p �� last�j�	p

END IF outer�if
END DO loopi

�HPF� END ON
END DO loopj

END DO main

Fig�	 
cont��� Outline for an extended HPF�
 speci�cation of the parallel right�looking
partial pivoting LU algorithm �last part�

The code also contains the user�de�ned routines append�� and insert��

for list management� which are included in a Fortran �� module� The append��
routine adds an entry at the end of a list� while the insert�� routine adds an
element at the beginning or in the middle of a list�

� Evaluating Results

Several parallel sparse implementations of the direct� right�looking LU algorithm
have been designed� One of such implementations� for instance� is extensively
described in ��	� Here� we will describe an implementation of the sparse right�
looking partial pivoting LU algorithm using Fortran �� and the Cray SHMEM
library� All the experiments were conducted on a Cray T�E multiprocessor�

The columns of the sparse matrix A were cyclically distributed over the
processors �linearly arranged� and stored in the local memories using one�
dimensional doubly linked lists� This parallel algorithm is similar to the sequen�
tial version� but with local indices instead of the global ones� and Cray SHMEM
routines performing communication�synchronization operations� All these op�
erations were encapsulated into calls to the DDLY �Data Distribution Layer
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Fig� ��� Parallel sparse LU execution times and speed�up for di�erent sparse matrices�
using F�� linked lists and Cray T�E SHMEM

Table �� Harwell�Boeing and Univ� of Florida test matrices

Matrix Origin n  entries sparsity

STEAM
 Oil reservoir simulation �� ���� ���
�

JPWH��� Circuit physics modeling ��� �
� ����
SHERMAN� Oil reservoir modeling ���� ���� �����
SHERMAN
 Oil reservoir modeling ���� 
���� �����

ORANI�� Economic modeling 
�
� ����� �����
WANG� Discretized electron continuity 
��� ����� ��

�
WANG
 Discretized electron continuity 
��� ����� ��

�

UTM��� Uedge test matrix ��� �

�� �����
GARON� 
D FEM� Navier�Stokes� CFD ���� ���
� �����
EX�� 
D isothermal seepage �ow �
�� ��� ����

SHERMAN� Oil reservoir modeling ���
 
���� �����
LNS���� Compressible �uid �ow ���� 
���� ����
LHR��C Light hydrocarbon recovery ���� �
�
 �����

CAVITY� Driven cavity problem ��
 ������ ���

runtime library ���	� The parallel code was designed in such a way that it could
be the output of a hypothetic extended HPF�� compiler �extended with the
directives for the proposed distribution schemes� That is� it should be not con�
sidered as an optimized hand�coded program� Appendix A sketches such output
parallel code �F�� plus DDLY calls�

Fig� 
� shows execution times and speed�up for the parallel LU algorithm�
Test sparse matrices were taken from the Harwell�Boeing suite and University of
Florida Sparse Matrix Collection ��	 �see Table 
� The e�ciency of the parallel
code is high when the size of the input matrix is signi�cantly large� We also
carried out experiments considering meshes of processors instead of linear arrays�
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Fig� ��� Workload �non�null matrix values� on each processor after executing the par�
allel sparse LU factorization on a ��processor system

Table �� Comparison between Fortran �� LU and MA�� �times in sec��

Times Errors

Matrix F	� � MA�� ratio F	� � MA��

STEAM
 ����� � ���� ���� ���E��� � ���E���
JPWH��� ����� � ��� ���� ���E��� � ��
E���

SHERMAN� ���� � ���� ���� ���E��
 � ��E��


SHERMAN
 ����� � ���� ���
 ���E�� � ���E��
ORANI�� ��� � ���
 ���� ���E��� � ���E���
WANG� ���� � ���� ���� ���E��
 � ���E���
WANG
 ���� � ���� ���� ���E��� � ��
E���

UTM��� 
���� � 

�� ���� ���E�� � ���E��
GARON� ���� � 
���� ��
 ���E�� � �
�E��
EX�� ���� � 
��� ���� �
�E��� � ���E���

SHERMAN� �
��� � ��� 
�� ���E��
 � ���E��

LNS���� 
���� � ����� ���� ���E�
 � ���E�

LHR��C 

��� � ����
 
��
 �

E�� � ���E��

CAVITY� ���
� � ����� ���� ���E�� � ���E��

but the best times were obtained in the latter case and when the matrices were
distributed by columns� Load imbalances due to �ll�in �cyclic distribution were
not a problem for any matrix �see Fig� 

�

The sequential e�ciency of the Fortran �� implementation of the sparse LU
algorithm was also tested� Table � presents comparison results from this imple�
mentation and the Fortran �� MA�� routine �
�	� We observe that the MA��
routine is signi�cantly faster than our algorithm for many matrices� but it should
be considered the fact that the Cray Fortran �� compiler is not e�cient gener�
ating code for managing lists� However� the resulting computing errors are prac�
tically the same for both algorithms� The main advantage of our approach is



its ease to be parallelized� as opposite to the MA�� routine� which is inherently
sequential� as corresponds to a left�looking algorithm�

The analyze and solve �forward and backward substitution stages of the
LU algorithm were also implemented using the proposed methodology� but they
are not presented here as no additional relevant aspect is contributed� Both
execution times� and the �ll�in� are comparable with those of the MA�� routine
�they do not di�er more than 
���

� Related Work

There are many parallel sparse LU factorization designs in the literature� From
the loop�level parallelism point of view� the parallel pivot approach allows the
extraction of an additional parallelism due to the sparsity of the matrix� besides
the obvious one coming from the independences on the loops traversing rows and
columns ��	� Coarser parallelism level can be exploited thanks to the elimination
tree� which can be used to schedule parallel tasks in a multifrontal �
�	 code� It
is also possible to use a coarse matrix decomposition to obtain an ordering to
bordered block triangular form� as is done in the MCSPARSE package �
�	� The
supernodal �

	 approach is also a parallelizable code �
�	�

Some of the above parallel solutions can be implemented using the approach
described in this paper� Loop�level LU approaches can be implemented using the
LLRCS data storage �in addition to LLCS� and some other complex reductions
to choose a good parallel pivot set� but loosing some of the performance due
to the semi�automatic implementation� The multifrontal approach� however� is
not suitable to the linked list sparse directive� due to the use of di�erent data
storage schemes� However� they could be implemented using the basic BCS or
BRS sparse distributions ��� ��	� The implementation of the supernodal code in
�

	 uses some sort of column compressed storage� but it would be necessary to
simplify the memory management and the data access patterns to consider a
data�parallel implementation of this code�

From the point of view of the automatic parallelization� dynamic data struc�
tures mean a lot of trouble to the compiler� In general� current data�parallel
compilers� such as the T�D�Craft and the SGI MIPSpro Fortran����� and IRIS
Power C �PCA compilers ���	� fail when dealing with codes involving pointers�
such as those using linked lists� We can also identify a number of other compile
time and runtime solutions to manage� in general� irregular codes� A signi�cant
portion of the work done was already introduced in Section 
 and Section ��

� Conclusions

This paper presented a solution to the parallelization of dynamic sparse matrix
computations �applications su�ering from �ll�in and�or involving pivoting oper�
ations in a HPF�� environment� The programmer is allowed to specify a partic�
ular sparse data storage representation� in addition to a standard data distribu�
tion� Sparse computations are speci�ed by means of the storage representation



constructs� while the �dense matrix notation is reserved to declare alignments
and distributions� Our experiments �a parallel sparse direct LU solver� emulat�

ing the output of an extended HPF�� compiler show that we can obtain high
e�ciencies using that strategy�

The research discussed in this paper gives new in�depth understanding in
the semi�automatic parallelization of irregular codes dealing with dynamic data
structures �list based� in such a way that the parallel code becomes a general�
ization of the original sequential code� An e�cient parallel sparse code can be
obtained by annotating the corresponding sequential version with a few number
of HPF�like directives� The techniques described in this paper are not only useful
to deal with the �ll�in and pivoting problems� but they can also be applied to
many other applications where the same or similar data structures are in use�
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Appendix A

Fortran �� code with calls to the DDLY library for the right�looking partial
pivoting LU algorithm� as an output produced by an extended HPF�� compiler�

�HPF� PROCESSORS� DIMENSION�dim�

 linear
� ��� td is a topology descriptor for a �� x dim� mesh

CALL ddly�new�topology�td���dim�

�HPF� REAL� DYNAMIC� SPARSE�LLCS�first� last� vsize� DOUBLY��

 A�n�n�
�HPF� REAL� DYNAMIC� SPARSE�CVS�vcoli� vcolv� size��

 VCOL�n�
� ��� Read a harwell�boeing matrix �av�c�r�

CALL ddly�HB�read�n�alpha�av�c�r�b�
� ��� Create a matrix descriptor� md�a� for A using CCS

CALL ddly�new�md�a�CCS�DDLY�MF�REAL�
� ��� Initialize md�a

CALL ddly�init�md�a�n�alpha�av�c�r�
� ��� Create an array descriptor� vd�vcol� for VCOL usign CVS

CALL ddly�new�vd�vcol�CVS�DDLY�VF�REAL�
� ��� Initialize vd�vcol

CALL ddly�init�vd�vcol�vcoli�vcolv�size�

� ��� Similar calls for other distributed arrays ���
���

�HPF� DISTRIBUTE ��CYCLIC� ONTO linear

 A
� ��� BCS distribution of A �specified by md�a�

CALL ddly�bcs�md�a� td�
� ��� md�a is now the descriptor of the distributed matrix
� ��� Change data storage CCS to LLCS

CALL ddly�ccs�to�llcs�md�a�first�last�vsize�DOUBLY�

�HPF� ALIGN iq�
� WITH A��
�
� ��� iq aligned with the �nd dimension of A

CALL ddly�alignv�vd�iq�md�a�SecondDim�

�HPF� ALIGN vpiv�
� WITH A��
�
CALL ddly�alignv�vd�vpiv�md�a�SecondDim�

�HPF� ALIGN vmaxval�
� WITH A��
�
CALL ddly�alignv�vd�vmaxval�md�a�SecondDim�

�HPF� ALIGN vcol�
� WITH A�
��
� ��� VCOL aligned with �st dimension of A

CALL ddly�aligncvs�vd�vcol�md�a�FirstDim�

�HPF� INDEPENDENT
� ��� Loop is partitioned

DO j � ddly�LowBound���� ddly�UpBound�n�
vpiv�j�	p �� first�j�	p

END DO

� ��� Main loop LU
main
 DO k � �� SwitchIter

� ��� Pivoting
� ��� Candidates for pivot are selected and ���
�HPF� INDEPENDENT
� ��� Loop is partitioned

DO j � ddly�LowBound�k�� ddly�UpBound�n�
�HPF� ON HOME �vpiv�j��� RESIDENT �A��j�� BEGIN

 Loop Body  �local to each processor�
�HPF� END ON

END DO

� ��� ��� the maximum value is calculated
� ��� Parallel reduction splitted into two standard phases
 ���
� ��� ��� First� local reductions� ���

maxpiv � MAXVAL�vmaxval�ddly�LowBound�k�
ddly�UpBound�n���
� ��� ��� second� global reduction

ddly�ReduceScalarMax�maxpiv�
maxpiv � maxpivu

�

�

�



�

�

�

� ��� The pivot is chosen from the candidates
� ��� �reduction operation�

actpiv��
pivcol��

�HPF� INDEPENDENT� REDUCTION�actpiv�pivcol�
� ��� Loop is partitioned

DO j � ddly�LowBound�k�� ddly�UpBound�n�
IF � vmaxval�j� � maxpiv �AND� iq�pivcol� � iq�j� � THEN

actpiv � vmaxval�j�
pivcol � j

END IF
END DO

� ��� Global reduction
pivcol � ddly�ReduceLocMaxAbs�actpiv�maxpiv�pivcol�iq�
IF �pivcol �� �� pivcol�k
IF �pivcol �� k� THEN

� ����� Columns are swapped
CALL swap�k�pivcol�first�last�vpiv�vsize�iq�

END IF

� ��� Pivot column is updated and packed
�HPF ON HOME �vpiv�k��� RESIDENT �A��k�� BEGIN
� ��� This loop appears due to the ON HOME directive

DO dum � ddly�LowBound�k��ddly�UpBound�k�
 ON HOME Body 

END DO
�HPF END ON

� ��� Pivot column is broadcast �because VCOL is replicated�
CALL ddly�aligncvs�vd�vcol�md�a�FirstDim�

� ��� Submatrix of A is updated
�HPF� INDEPENDENT� NEW �aux�i�amul�product�
� ��� Loop is partitioned

DO j � ddly�LowBound�k���� ddly�UpBound�n�
�HPF� ON HOME �vpiv�j��� RESIDENT �A��j�� BEGIN

 ON HOME Body 
�HPF� END ON

END DO
END DO main

�
�������������������������������������������������������������������
� The independent loops �DO j � globa� globb� are translated into
� �DO j � ddly�LowBound�globa�� ddly�UpBound�globb��
� my�pe is a global variable which contains the processor id
� N�PES � � of PEs �global variable on the Cray T�E platform�

INTEGER FUNCTION ddly�LowBound �i�
INTEGER i
ddly�LowBound � �i����N�PES��
IF �my�pe � MOD�i���N�PES�� ddly�LowBound � ddly�LowBound��

END FUNCTION ddly�LowBound

INTEGER FUNCTION ddly�UpBound �i�
INTEGER i
ddly�UpBound � i�N�PES
IF �my�pe � MOD�i�N�PES�� ddly�UpBound � ddly�UpBound��

END FUNCTION ddly�UpBound


