
Parallel Pivots LU Algorithm on the Cray T3E

R. Asenjo
E.L. Zapata

February 1999
Technical Report No: UMA-DAC-99/01

Published in:
4th International Conference of the ACPC (ACPC’99)
University of Salzburg, Austria, pp. 38-47, Feb. 16-18, 1999

University of Malaga
Department of Computer Architecture
C. Tecnologico • PO Box 4114 • E-29080 Malaga • Spain

Parallel Pivots LU Algorithm on the Cray T�E�

Rafael Asenjo and Emilio L� Zapata

Computer Architecture Department
University of M�alaga� Spain�
fasenjo�ezapatag�ac�uma�es�

WWW home page� http���www�ac�uma�es

Abstract� Solving large nonsymmetric sparse linear systems on dis�
tributed memory multiprocessors is an active research area� We present
a loop�level parallelized generic LU algorithm which comprises analyse�
factorize and solve stages� To further exploit matrix sparsity and par�
allelism� the analyse step looks for a set of compatible pivots� Sparse
techniques are applied until the reduced submatrix reaches a thresh�
old density� At this point� a switch to dense routines takes place in both
analyse�factorize and solve stages� The SPMD code follows a sparse cyclic
distribution to map the system matrix onto a P � Q processor mesh�
Experimental results show a good behavior of our sequential algorithm
compared with a standard generic solver� the MA�� routine� Addition�
ally� a parallel version on the Cray T�E exhibits high performance in
terms of speed�up and e�ciency�

� Introduction

The kernel of many computer�assisted scienti�c applications is to solve large
sparse linear systems� Furthermore� this problem presents a good case study
and is a representative computational code for many other irregular problems�

We say that a matrix is sparse if it is advantageous to exploit its null elements
with the development of a sparse version of an algorithm� instead of a dense
one� However� if the matrix su�ers from �ll�in it will be worthwhile to combine
sparse and dense approaches� That way� our parallel nonsymmetric sparse system
solver algorithm follows sparse processing techniques until the reduced submatrix
reaches a certain threshold density� At this point� we switch to a parallel dense
LU factorization code which uses BLAS as much as possible�

For the sake of brevity� a sparse LU factorization problem survey and a
more detailed description of our algorithm are presented in ���� In this paper
we brie�y comment the proposed algorithm� but the main section focus on the
experimental results� validation of the sequential code� and presentation of the
parallel performance� Finally� the related work and conclusions section close the
paper�

�
The work described in this paper was supported by the Ministry of Education and Science �CI�
CYT� of Spain under project TIC��������C�	
 by the European Union under contract BRITE�
EURAM III BE�������
 by the Human Capital and Mobility programme of the European Union
under project ERB����P�������
 and by the Training and Research on Advanced Computing
Systems �TRACS� at the Edinburgh Parallel Computing Centre �EPCC�

� Algorithm outline and input parameters

Summarizing� the main characteristics of the proposed code� called SpLU� are	

� The algorithm is right�looking� The code� written in C� is SPMD and is de�
signed for a distributed memory multiprocessor� There is a portable version
thanks to the MPI message passing interface� and a more optimized one for
the Cray T
D or T
E using the SHMEM library�

� Data distribution follows the two dimensional sparse cyclic scheme �scatter��
mapping the system matrix A �n� n� onto a P � Q processor mesh�

� The data structure used to store local matrices is a semi�ordered two�dimen�
sional doubly linked list� Entries are linked in an ordered way by rows and
by columns in any order�

� We exploit both inherent parallelism in the updating loops and the paral�
lelism we achieve by selecting m compatible pivots� Analyse and factorize
stages are joined into a single analyse�factorize one�

� We use a threshold�based heuristic to ensure numerical stability� and the
Markowitz criterion �min row in min column� to preserve sparsity� The num�
ber of columns in which we search for compatible pivots change according
to matrix density in an adaptive way� Explicit full pivoting reduces the un�
balancing problems �
�
��

� When matrix density reaches certain threshold� we switch to a parallel dense
LU factorization code�

� The solve stage is also a parallel phase� with sparse and dense sub�stages for
the forward and backward substitution�

In the parallel sparse factorization� the sequential outermost loop� k� nests
three parallel stages	 look for a set of m compatible pivots� called PivotSet�
parallel rows and columns permutations� and reduced submatrix update� For
each iteration� k�k�m�

Apart from the data structure for matrix A� we will need two nonzero count

vectors� R and C to implement the Markowitz strategy� The value R
�k�
i �C

�k�
j �

represents the number of entries in row i �column j� of active matrix at iteration

k� For a selected pivot A�k�
ij � the maximum number of new entries that can be

created may be M
�k�
ij � �R

�k�
i ���C

�k�
j ��� where M

�k�
ij is the Markowitz count

at iteration k for the mentioned pivot�
Therefore� to preserve sparsity� selected pivots should have a minimumMar�

kowitz count and a maximum absolute value to ensure stability� On the other
hand this search is prohibitive� since one needs to visit the whole active matrix�
To keep the search for compatible pivots e�ective and simple� we will only search

in the ncol columns with the least C
�k�
j in each column of the processor mesh� In

these columns we will select candidates to be pivots to those with minimumR
�k�
i

�min row in min column technique� and complying with the following equation

to ensure numerical stability	 jA�k�
ij j � u � maxl jA

�k�
lj j� This input parameter u�

� � u � � will prioritize stability when u � � or sparsity when u � ��

To control sparsity� an additional input parameter a will be used to reject
pivots with an unacceptable Markowitz count� In particular� candidates with
Mij � a �Mi��j� will be rejected� where Mi��j� is the minimumMarkowitz count
of the candidates�

Vectors C�k� or R�k� are also used to decide the switch iteration to a dense
factorization code� Active submatrix density� dens� is calculated at each k iter�
ation as dens� �

Pn��
i�k R

�k����n � k�� When dens�maxdens� where maxdens is
an input parameter� and n�k is big enough to compensate the data structure
change� the switch to a dense code takes place� In addition� when active matrix
density increases� looking for parallel pivots tends to be unproductive� For this
reason� initially� ncol contains the number of columns per processor in which
the search for candidates is performed� but this ncol parameter will change
dynamically during factorization� automatically adapting to the density�

� Experimental results

This section aims to analyse the sequential and parallel behavior of our SpLU
algorithm�when changing the input matrix characteristics and some of the input
parameters� Experimental results will be conducted on a Cray T
E with �
DEC ��� �Alpha EV��� processors at
�� MHz with a peak performance of
��� M�ops per processor� We have selected some heterogeneous unsymmetric
sparse matrices from Harwell�Boeing ��� and the University of Florida ��� matrix
collection� As a message�passing interface� SHMEM routines have been used since
they are supported by the CRAY T
E supercomputer� The sequential version of
the program is obtained by simplifying the parallel code� removing all redundant
or never executed sentences when P � and Q � �

��� Fill�in and stability

Two input parameters can be tuned to control stability and �ll�in	 u and a� A
study of u parameter incidence is presented in table � We can see the variation
of the average size of diagonal blocks m� the number of sparse LU iterations�
�ll�in and factorization errors� for di�erent u values� For the sake of brevity� we
present these results for the LNS
�
� matrix� Other matrices show the same
behavior� but the LNS
�
� is the worst conditioned and the u e�ect can be
better appreciated� In the experiment we �xed a� � and ncol� ��

Values for u 	�
 	�� 	�� 	�	� 	�	� 	�		�

m ���� ��� ��� �
	 ���� ����
Sparse iterations �
� ��� ��
 ��	 ��	 ��

Fill�in ������ ��	��� ����� ����� ��	�� ���

Error ����E�� ��	�E��
��E�� ����E�� ����E�� ��	�E��

Table �� The in�uence of the u parameter on LNS�
��

In table we can see that the smaller u is� the bigger is the average size
of PivotSet� allowing us to exploit more parallelism� The same e�ect can be
appreciated in the next row	 increasing m makes the number of outermost loop
iterations decrease� thus reducing both sequential and parallel execution time�
Additionally� �ll�in is reduced when u is diminished� since there are more can�
didates to choose from with a smaller Markowitz count� On the other hand� the
factorization error increases when reducing u� which leads to the necessity of
choosing a trade�o� value� Furthermore� we have observed that the more den�
sity is achieved on factors L and U � the bigger is the factorization error� as the
number of �oating point operations increases� For this reason� for u� �� we get
the minimum error� These experiments corroborate that the trade�o� u� �� ���
�� leads to good results in many situations� In any case� the best selection of u is
problem dependent� so we may need to test some u values to �nd the best one�

The algorithm behavior as a function of the a input parameter is shown in
table � for the same matrix LNS
�
�� with u� �� and ncol� ��

Values for a �	 � � � �

m ���� ��
� ��
 ��� ���� ����
Sparse Iterations �� ��� ��� ��
 �� ���
Fill�in ����� ����� ������ ����� ���
�� ��	��

Table �� The in�uence of the a parameter on LNS�
��

The greater a is� the bigger will be the average size of the compatible pivots
set� and the less the number of sparse iterations� At the same time� if we do not
limit the Markowitz count� we can select pivots which will bring about more �ll�
in� To keep a high m without provoking an excessive �ll�in� the trade�o� value
for a will be around � �also selected by other authors �������

As ncol value is dynamically adjusted during program execution� the initial
value is not specially signi�cant� In any case� we found an appropriate initial
value ncol���

Searching for a parallel pivots set is worthwhile even in the sequential code�
as we can see in �gure �a�� where we study the execution time versus the
value of maxncol� In this experiment we have �xed ncol�maxncol� cancelling
the adaptive function to update ncol� For the more sparse matrix in our set
�SHERMAN�� and the second most dense one �SHERMAN��� we present in
this �gure the execution time normalized by the time when maxncol���

When factorizing sparse matrices� we see that it is interesting to search for
big sets of compatible pivots� Regarding SHERMAN�� the sequential time when
�xing ncol�� is over ��� less than the one we get when ncol�� The variable
m reaches the value ���� with ncol�
�� although execution time is worse due to
wastage of time looking for compatible pivots� However� when factorizing more
dense matrices� such as SHERMAN�� setting ncol to a large value is unproduc�
tive� For example� when ncol���� we search for a large set of candidates which
later turned out to be incompatible due to high matrix density�

0.0 20.0 40.0 60.0
maxncol

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 ti
m

e

 SHERMAN2
 SHERMAN5

�a�

0.0 20.0 40.0 60.0 80.0 100.0
maxdens (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 ti
m

e

STEAM2
JPWH991
SHERMAN1
SHERMAN2
LNS3937

�b�

Fig� �� Fixed ncol �a� and maxdens �b� in�uence on execution time

Finally� we have also studied execution time dependence with the threshold
maxdens which decides the switch to a dense code� In �gure �b� we show the
relation between maxdens and execution time for some matrices� Execution times
are normalized by the worst case �when there is no switch to a dense factorization
code� identi�ed in the �gure by maxdens���� We see that the switch leads to a
signi�cant execution time saving� Minimum execution times are obtained when
maxdens����

��� Comparison with the MA�� routine

Before studying the parallel algorithm performance� it is important to check that
the sequential version is good enough� The MA�� routine ��� is one of the generic
sparse system solver more widely used� The good performance of this routine is
mainly due to its left�looking organization which leads to low data tra�c with
memory and a subsequent good exploitation of the cache� However� this left�
looking organization leads to low e�ciencies in a loop level parallelized version
of the MA��� On the other hand� SpLU exhibits more loop level parallelism due
to the right�looking and parallel pivots organization� but should be comparable to
MA�� performances and execution time if we want to get a competitive generic
code�

In table
 we present a comparison for the more signi�cant characteristics of
both algorithms	 execution time� factorization error and �ll�in� Common param�
eters are set equally	 u��� and maxdens����

We can see how the execution time ratio �MA�� time divided by SpLU time�
is greater than one� for �ve matrices �ratios in boldface�� In these cases SpLU is
faster than MA��� reaching a ���� factor for the EX�HS matrix� However� for
the remaining � matrices MA�� is faster than SpLU� although the ratio do not
decrease below ���� except for WANG� WANG�� and LHR��C matrices� For
the latter� LHR��C� factorization time in SpLU is clearly the worst� but this is
in exchange for a numerical error around �� times better�

For � of the � matrices the factorization error in SpLU is better than in
the MA�� routine� For the remaining � matrices� there is never more than an

Time Error Fill�in

Matrix SpLU�MA�� ratio SpLU�MA�� SpLU�MA��

STEAM� ���	��� �	���� ���E�������E��� ��		����	�
JPWH

� ��	����� �	���� ���E�������E��� ����
��	��
�

SHERMAN� ������
 �	���� ���E������E��� ����	������
SHERMAN� ������� ������ ��E�����E�� ��	�
���	�
EX�	 ���
������ ������ ���E�����E� ��������
��	
ORANI��
������� �	��	� ���E�������E��� �
	����
��	

EX�	HS �	��������� ����� ���E�����	E� ���
��������
CAVITY�	 ���������
� �	��	� ��E�����E�
 ���
�����	���

WANG� ��

������ �	���� ��E�����
�E��� �����	���	�
�

WANG� �
�������	� �	���� ���E�������E��� ����	����	�
�

UTM�		 ����	����� �	��� ��E������E�� �
����	��
��
GARON�
�������	� �	��	� ���E������E�� ��������������

EX�� ��������	�� ���	� ���E����
�E�� �����	������
SHERMAN� ��
����	� ����� ���E������
E��� �������
���
LNS�
�� ��������� �	���� �
�E������E�� �	�������		��
�

LHR	�C �	��������	� �	���� ���E�	���E�� �
��������	���
CAVITY� �
�����	
�� �	��� ���E�
���
E�
 �����������	�

Table �� SpLU and MA�� comparison

order of magnitude of di�erence� With regard to �ll�in� L and U matrices are
sparser on � occasions if they are computed by SpLU code�

In spite of the high optimization of the MA�� code� we believe that it can
be improved by the SpLU in some cases due to the analyse stage� Even when
the MA�� analyse stage is also based on Markowitz and threshold strategies� the
fact that this analyse stage takes place before factorizing has its own drawbacks	
permutation vectors are selected in advance� but during the factorize stage� the
numerical partial pivoting is also allowed and this may undo the analyse decisions
to some extent�

SpLU shows a joined analyse�factorize stage where for each iteration a proper
set of compatible pivots are selected over the candidates in the active matrix�
In many cases this enables a better pivot selection during factorization� yielding
better numerical precision� In exchange� the analyse fragment of code is more
expensive than the corresponding one in the MA��� due to it searching for a
single pivot instead of many which are mutually compatible�

��� Parallel performance

In this section we will compare the parallel algorithm execution time over a
P �Q processor mesh with the sequential version� executed over a single Alpha
processor� To make times comparable for both versions� input parameters will
be equally �xed� As we saw in subsection
� it seems appropriate to set u���
and a��� As for the initial local ncol� it will be set to ��Q� to make the initial
maximum number of compatible pivots independent of the mesh size�

Parallel version exhibits the same �ll�in and factorization error as sequential
version� as u� a� and maxdens� do not a�ect the parallel version in a di�erent
way to the sequential one�

Table � presents the speed�up we get when factorizing the � biggest matrices
in our set� The last three columns in this table show dimension� n� initial density�
��� and the �nal one� �n� Figure � shows speed�up and e�ciency when factorizing
the � computationally more expensive matrices for four mesh sizes�

Speed�up Density
Matriz � � � � n �� �n

SHERMAN� ���� ��� ��
�
��� �	�	 ��
�� ���
��
EX�	 ���� ��

 ���� ��
 ���	 	�
�� �����

ORANI�� ���� ��	� ��
 �� ���
 ����� ����
EX�	HS ���� ��� ���
 ��� ���� 	���� ��
��
CAVITY�	 ��
� ���� ���
 ���� ��
� ����� �����

WANG� ��� ��� ��	� �	��� �
	� 	���� ���
��
WANG� ��	 ���� �	 ����� �
	� 	���� ���
��
UTM�		 ���� ���� ���� �	�	� �		 	���� ����
�
GARON� ���� ��� ���� ���	� ���� 	���� ����	�

EX�� ���� ��	� ���� ����� ���� 	��� ����	�
SHERMAN� ��� ��		 ���� �� ���� 	��
� �����
LNS�
�� ��
� ��
 ��� ���	� �
�� 	��� �
��

LHR	�C ��	� ��
� ��	� ����
 ��	� 	��
� ������
CAVITY� ��

 ���� ���� ����� ��� 	�� ����
�

Table �� Speed�up for di�erent mesh sizes

We see that speed�up monotonically increases with the number of proces�
sors� When changing from � to � processors� EX� and EX�HS exhibit a less
notable increment of speed�up due to the low computational load presented by
these matrices� In these cases� communications dominate local computations and
messages comprise a small number of data� so latency prevails over communica�
tion bandwidth� We should take into account the high ratio between the power
of Alpha ����
��Mhz and the ���Mbytes�s peak bandwidth and ��� to � �s
latency for the shmem�put communication routine�

It is noteworthy that� contrary to dense LU factorization� the computational
load depends not only on the matrix dimension but also on the initial or �even
more� �nal density� This way� EX�� EX�HS� and SHERMAN� are the only
matrices with �n ��� and with lowest speed�up on � processors�

Therefore� better speed�ups on � processors are reached for matrices with
high n and high �n� The best speed�up is presented for CAVITY�� For some of
the bigger matrices� such as WANG� WANG�� and EX�� parallel factorization
exhibits super�lineal speed�up even for four processors�

Regarding the solve stage� we did not reach speed�up when using more than �
processors� The reason is the low computational load presented by these matrices

1 2 4 8 16
Number of Processors

1

2

4

8

16

Sp
ee

d-
up

SPEED-UP
SpLU (Cray T3E, SHMEM)

 CAVITY10
 WANG1
 WANG2
 UTM3060
 GARON1
 EX14
 LNS3937
 LHR04C
 CAVITY16

1 2 4 8 16
Number of Processors

0

20

40

60

80

100

E
ff

ic
ie

nc
y

(%
)

EFFICIENCY
SpLU (Cray T3E, SHMEM)

 CAVITY10
 WANG1
 WANG2
 UTM3060
 GARON1
 EX14
 LNS3937
 LHR04C
 CAVITY16

Fig� �� SpLU speed�up and e�ciency

for this step� The time expended on the solve stage never exceeded ��
 seconds for
any of the � matrices �the more expensive is CAVITY� expending ���� seconds
on this stage�� Additionally� our solve stage comprises a sparse and a dense
part� and the last one can only exploit unidimensional parallelism� Therefore�
redistribution for the dense submatrix implies some overhead� In any case� the
parallel solve stage is worthwhile as it permits us to solve matrices which do not
�t on an single processor� Moreover� the parallel solve stage avoids collecting
the whole matrix in one processor� As future work we will try to reduce this
communication overhead by using a block cyclic distribution�

� Related work

In this section we summarize recent works� organizing them according to the
level of parallelism� Regarding task level parallelism� Gallivan� Marsolf� and Wi�
jsho� ����� ��� carry out a matrix reordering to a bordered block triangular
form� In the same direction� Zlatev et al� ����� ��� have developed the tool
PARASPAR� to solve the linear system on shared memory multiprocessors� By
using a better reordering stage� LORA�P� code� the Y�M
 program achieves
speed�ups between
�� and ��� on � processors of the Alliant FX��� ����

Apart from reordering� another source of task parallelism is multifrontal or
supernode methods� As these methods were traditionally applied to symmetric
matrices� parallel cholesky multifrontal codes were quickly developed� Gupta�
Karypis� and Kumar ����� ��� were the authors who reported probably the
best performance for the sparse cholesky�

A signi�cant more di�cult problem appears when matrices are not sym�
metric� Here� the supernode tree is the tool to exploit task level parallelism� A
parallel version of the SuperLU is presented by Li et al� ���� achieving on �
processors shared memory machines� and for � unsymmetric sparse matrices�
an average speed�up of less than �� Better results can be achieved on distributed
memorymachines as recently shown by Fu� Jiao� and Yang ����� ��� However�

they have parallelized the factorize stage only� which can be executed in parallel
thanks to �ll�in overestimation carried out on the analyse stage�

Regarding the loop level parallelism and parallel pivots approach� there are
some algorithms for shared memory machines	 Alaghband ����� ��� Davis and
Yew ����� ���� and Zlatev et al� ����� ���� The experimental results of these
previous works lead us to conclude that actual system solver implementations
for shared memory multiprocessors hardly exceed ��� e�ciency in � processors�

Better results are reached for distributed memory machines as presented by
Stappen� Bisseling� and van der Vorst ���
� ��� for a square Transputer mesh�
and by Koster and Bisseling ����� ��� also for a transputer mesh� In these
codes� they do not present a switch to a dense code stage nor parallel solve
stage�

� Conclusions

This work presents a complete tool� SpLU� to solve large nonsymmetric linear
systems on distributed memory multiprocessors� SpLU code comprises analyse�
factorize and solve stages� Both of them were split into sparse and dense steps
to avoid applying sparse techniques when �ll�in turns the problem into a dense
one� The algorithm follows a generic approach exploiting loop�level parallelism
and takes advantage of matrix sparsity due to parallel pivoting selection� We
have compared sequential SpLU with another generic sequential nonsymmetric
sparse solver	 the high optimized MA�� routine� Our SpLU code leads in many
cases to fewer numerical errors and �ll�in than MA�� does� On the other hand�
MA�� is usually slightly faster than the sequential SpLU� but to the best of
our knowledge MA�� can not be parallelized e�ciently� Therefore� since SpLU
exhibits a high degree of parallelism� speed�up computed as MA�� sequential
time divided by parallel SpLU execution time is still competitive�

As far as we know� there is no published work for the whole parallel nonsym�
metric sparse system solver on current distributed memory machines� including
sparse analyse�factorize stage� switch to dense LU factorization stage� and for�
ward and backward substitution�

On the other hand� SpLU could be improved mainly in two areas� The �rst
is further reducing communication overhead by using a block cyclic distribution
instead of a cyclic one� The second one is directed at reducing data movements
and to make entries insertion easier using an unordered linked list both by rows
and columns� This two points joined with better care of cache exploiting would
result in higher performances�

Acknowledgements

We gratefully thank Iain Du� and all the members in the parallel algorithm team
at CERFACS� Toulouse �France�� for their kind help and collaboration� We also
thank the CIEMAT �Centro de Investigaciones Energ�eticas� Medioambientales
y Tecnol�ogicas�� Spain� for giving us access to the Cray T
E multiprocessor�

References

�� G� Alaghband� Parallel sparse matrix solution and performance� Parallel Comput�
ing� ���
����	�����	� �

��

�� R� Asenjo and E�L� Zapata� Parallel pivots lu algorithm on the Cray T�E� Technical
Report UMA�DAC�

�	�� Dept� of Computer Architecture� University of Mlaga�
Spain� http���www�ac�uma�es�� �

��

�� E� Chu and A� George� Gaussian elimination with partial pivoting and load bal�
ancing on a multiprocessor� Parallel Comput�� ������� �
���

�� T� A� Davis� A parallel algorithm for sparse unsymmetric LU factorization� PhD
thesis� Center for Supercomputing Research and Development� Univ� of Illinois�
Urbana� IL� September �
�
�

�� T� A� Davis and P� C� Yew� A nondeterministic parallel algorithm for general
unsymmetric sparse LU factorization� SIAM J� Matrix Anal� Appl�� ��������	��
�

	�

� Tim Davis� Sparse matrix collection� At URL http���www�cise�u��edu� davis��
�� J�J� Dongarra� I�S� Du�� D�C� Sorensen� and H�A� van der Vorst� Solving Linear

Systems on Vector and Shared Memory Computers� Society for Industrial and
Applied Mathematics� �

��

�� I�S� Du�� A�M� Erisman� and J�K� Reid� Direct Methods for Sparse Matrices�
Oxford University Press� Oxford� U�K�� �
��

� I�S� Du�� R�G� Grimes� and J�G� Lewis� User�s guide for the Harwell�Boeing sparse
matrix collection �Release I�� Technical report� CERFACS� Toulouse� France� �

��

�	� I�S� Du� and J�K� Reid� The design of MA��� A code for the direct solution
of sparse unsymmetric linear systems of equations� ACM Trans� Math� Softw��
������������� June �

�

��� C� Fu� X� Jiao� and T� Yang� E�cient sparse lu factorization with partial piv�
oting on distributed memory architectures� IEEE Transaction on Parallel and

Distributed Systems�
�����	
����� February �

��
��� K� Gallivan� B� Marsolf� and H�A�G� Wijsho�� Solving large nonsymmetric sparse

linear systems using MCSPARSE� Parallel Computing� ����	����
������� �

�
��� G� A� Geist and C� H� Romine� LU factorization algorithm on distributed�memory

multiprocessor architecture� SIAM J� Sci� Statist� Comput��
��
��
� �
�
�
��� A� Gupta� G� Karypis� and V� Kumar� Highly scalable parallel algorithms for sparse

matrix factorization� IEEE Transactions on Parallel and Distributed Systems� �����
�

�� Available at URL� http���www�cs�umn�edu��kumar�

��� J� Koster and R�H� Bisseling� An improved algorithm for parallel sparse LU de�
composition on a distributed memory multiprocessor� In J�G� Lewis� editor� Fifth
SIAM Conference on Applied Linear Algebra� pages �
���	�� �

��

�� X� Li� Sparse Gaussian Elimination on High Performance Computers� PhD thesis�
CS� UC Berkeley� �

�

��� A� F� van der Stappen� R� H� Bisseling� and J� G� G� van de Vorst� Parallel sparse
LU decomposition on a mesh network of transputers� SIAM J� Matrix Anal� Appl��
������������
� July �

��

��� A�C�N� van Duin� P�C� Hansen� T� Ostromsky� H�A�G� Wijsho�� and Z� Zlatev�
Improving the numerical stability and the performance of a parallel sparse solver�
Computers Math� Applic�� �	����
� �

��

�
� Z� Zlatev� J� Wa�sniewski� P�C� Hansen� and T� Ostromsky� PARASPAR� a package
for the solution of large linear algebraic equations on parallel computers with shared
memory� Technical Report
���	� Tech� Univ� Denmark� Lyngby� �

��

