Parallel Pivots LU Algorithm on the Cray T3E

R. Asenjo
E.L. Zapata
February 1999
Technical Report No: UMA-DAC-99/01
Published in:

4th International Conference of the ACPC (ACPC’'99)
University of Salzburg, Austria, pp. 38-47, Feb. 16-18, 1999

University of Malaga

Department of Computer Architecture
C. Tecnologico = PO Box 4114 « E-29080 Malaga = Spain



Parallel Pivots LU Algorithm on the Cray T3E*

Rafael Asenjo and Emilio L. Zapata

Computer Architecture Department
University of Malaga, Spain,
{asenjo,ezapata}@ac.uma.es,
WWW home page: http://wuw.ac.una.es

Abstract. Solving large nonsymmetric sparse linear systems on dis-
tributed memory multiprocessors is an active research area. We present
a loop-level parallelized generic LU algorithm which comprises analyse-
factorize and solve stages. To further exploit matrix sparsity and par-
allelism, the analyse step looks for a set of compatible pivots. Sparse
techniques are applied until the reduced submatrix reaches a thresh-
old density. At this point, a switch to dense routines takes place in both
analyse-factorize and solve stages. The SPMD code follows a sparse cyclic
distribution to map the system matrix onto a P x @ processor mesh.
Experimental results show a good behavior of our sequential algorithm
compared with a standard generic solver: the MA48 routine. Addition-
ally, a parallel version on the Cray T3E exhibits high performance in
terms of speed-up and efficiency.

1 Introduction

The kernel of many computer-assisted scientific applications is to solve large
sparse linear systems. Furthermore, this problem presents a good case study
and 1s a representative computational code for many other irregular problems.

We say that a matrix is sparse if it is advantageous to exploit its null elements
with the development of a sparse version of an algorithm, instead of a dense
one. However, if the matrix suffers from fill-in it will be worthwhile to combine
sparse and dense approaches. That way, our parallel nonsymmetric sparse system
solver algorithm follows sparse processing techniques until the reduced submatrix
reaches a certain threshold density. At this point, we switch to a parallel dense
LU factorization code which uses BLAS as much as possible.

For the sake of brevity, a sparse LU factorization problem survey and a
more detailed description of our algorithm are presented in [2]. In this paper
we briefly comment the proposed algorithm, but the main section focus on the
experimental results, validation of the sequential code, and presentation of the
parallel performance. Finally, the related work and conclusions section close the

paper.

* The work described in this paper was supported by the Ministry of Education and Science (CI-
CYT) of Spain under project TIC96-1125-C03, by the European Union under contract BRITE-
EURAM III BE95-1564, by the Human Capital and Mobility programme of the European Union
under project ERB4050P1921660, and by the Training and Research on Advanced Computing
Systems (TRACS) at the Edinburgh Parallel Computing Centre (EPCC)



2 Algorithm outline and input parameters

Summarizing, the main characteristics of the proposed code, called SpLU, are:

— The algorithm is right-looking. The code, written in C; is SPMD and is de-
signed for a distributed memory multiprocessor. There is a portable version
thanks to the MPI message passing interface, and a more optimized one for
the Cray T3D or T3E using the SHMEM library.

— Data distribution follows the two dimensional sparse cyclic scheme (scatter),
mapping the system matrix A (n x n) onto a P x @ processor mesh.

— The data structure used to store local matrices 1s a semi-ordered two-dimen-
sional doubly linked list. Entries are linked in an ordered way by rows and
by columns in any order.

— We exploit both inherent parallelism in the updating loops and the paral-
lelism we achieve by selecting m compatible pivots. Analyse and factorize
stages are joined into a single analyse-factorize one.

— We use a threshold-based heuristic to ensure numerical stability, and the
Markowitz criterion (min row in min column) to preserve sparsity. The num-
ber of columns in which we search for compatible pivots change according
to matrix density in an adaptive way. Explicit full pivoting reduces the un-
balancing problems [3,13].

— When matrix density reaches certain threshold, we switch to a parallel dense
LU factorization code.

— The solve stage is also a parallel phase, with sparse and dense sub-stages for
the forward and backward substitution.

In the parallel sparse factorization, the sequential outermost loop, k, nests
three parallel stages: look for a set of m compatible pivots, called PivotSet;
parallel rows and columns permutations; and reduced submatrix update. For
each iteration, k=k+m.

Apart from the data structure for matrix A, we will need two nonzero count

vectors, R and C' to implement the Markowitz strategy. The value Rl(k) (C'](»k))
represents the number of entries in row i (column j) of active matrix at iteration
(k)
(3
created may be Ml(f) = (Rl(k) — 1)(0}“ — 1), where Ml(f) is the Markowitz count
at iteration k for the mentioned pivot.

Therefore, to preserve sparsity, selected pivots should have a minimum Mar-
kowitz count and a maximum absolute value to ensure stability. On the other
hand this search is prohibitive, since one needs to visit the whole active matrix.

To keep the search for compatible pivots effective and simple, we will only search
(k)
J

k. For a selected pivot A}.’, the maximum number of new entries that can be

in each column of the processor mesh. In

(%)

these columns we will select candidates to be pivots to those with minimum R,
(min row in min column technique) and complying with the following equation

in the ncol columns with the least C'

to ensure numerical stability: |Al(f)| > u - max |Al(f)| This input parameter u,
0 < u <1, will prioritize stability when u — 1, or sparsity when u — 0.



To control sparsity, an additional input parameter a will be used to reject
pivots with an unacceptable Markowitz count. In particular, candidates with
M;; > a- M, ;, will be rejected, where M; 1s the minimum Markowitz count
of the candidates.

Vectors C'¥) or R*) are also used to decide the switch iteration to a dense
factorization code. Active submatrix density, dens, is calculated at each k iter-
ation as dens= (Z?:_kl R®))/(n — k). When dens>maxdens, where maxdens is
an input parameter;, and n—k is big enough to compensate the data structure
change, the switch to a dense code takes place. In addition, when active matrix
density increases, looking for parallel pivots tends to be unproductive. For this
reason, initially, ncol contains the number of columns per processor in which
the search for candidates i1s performed, but this ncol parameter will change
dynamically during factorization, automatically adapting to the density.

Dij

3 Experimental results

This section aims to analyse the sequential and parallel behavior of our SpLU
algorithm, when changing the input matrix characteristics and some of the input
parameters. Experimental results will be conducted on a Cray T3E with 16
DEC 21164 (Alpha EV-5) processors at 300 MHz with a peak performance of
600 Mflops per processor. We have selected some heterogeneous unsymmetric
sparse matrices from Harwell-Boeing [9] and the University of Florida [6] matrix
collection. As a message-passing interface, SHMEM routines have been used since
they are supported by the CRAY T3E supercomputer. The sequential version of
the program is obtained by simplifying the parallel code, removing all redundant
or never executed sentences when P =1 and @ = 1.

3.1 Fill-in and stability

Two input parameters can be tuned to control stability and fill-in: u and a. A
study of u parameter incidence is presented in table 1. We can see the variation
of the average size of diagonal blocks i, the number of sparse LU iterations,
fill-in and factorization errors, for different u values. For the sake of brevity, we
present these results for the LNS3937 matrix. Other matrices show the same
behavior, but the LNS3937 is the worst conditioned and the u effect can be
better appreciated. In the experiment we fixed a= 4 and ncol= 16.

[Values foru | 0.9 0.5 0.1 0.05 0.01 0.001]
m 584 617 685 690 7.28 848
Sparse iterations 493 475 429 420 410 349
Fill-in 283772 250748 241163 222655 216017 216196
Error 2.32E-2 1.05E-2 9.56E-3 2.27E-2 2.57E-2 4.02E-1

Table 1. The influence of the u parameter on LNS3937



In table 1 we can see that the smaller u is, the bigger is the average size
of PivotSet, allowing us to exploit more parallelism. The same effect can be
appreciated in the next row: increasing m makes the number of outermost loop
iterations decrease, thus reducing both sequential and parallel execution time.
Additionally, fill-in is reduced when u is diminished, since there are more can-
didates to choose from with a smaller Markowitz count. On the other hand, the
factorization error increases when reducing u, which leads to the necessity of
choosing a trade-off value. Furthermore, we have observed that the more den-
sity 1s achieved on factors L and U, the bigger is the factorization error, as the
number of floating point operations increases. For this reason, for u= 0.1 we get
the minimum error. These experiments corroborate that the trade-off uas 0.1 [8,
7] leads to good results in many situations. In any case, the best selection of u is
problem dependent, so we may need to test some u values to find the best one.

The algorithm behavior as a function of the a input parameter is shown in
table 2 for the same matrix LNS3937, with u= 0.1 and ncol= 16.

|Values for a | 10 8 6 4 2 1|
m 8.38 7.91 7.69 6.85 4.27 1.84
Sparse Iterations 361 377 384 429 687 1611
Fill-in 254176 251622 245374 241163 238923 220624

Table 2. The influence of the a parameter on LNS3937

The greater a is, the bigger will be the average size of the compatible pivots
set, and the less the number of sparse iterations. At the same time, if we do not
limit the Markowitz count, we can select pivots which will bring about more fill-
in. To keep a high m without provoking an excessive fill-in, the trade-off value
for a will be around 4 (also selected by other authors [4,15]).

As ncol value is dynamically adjusted during program execution, the initial
value is not specially significant. In any case, we found an appropriate initial
value ncol=16.

Searching for a parallel pivots set is worthwhile even in the sequential code,
as we can see in figure 1 (a), where we study the execution time versus the
value of maxncol. In this experiment we have fixed ncol=maxncol, cancelling
the adaptive function to update ncol. For the more sparse matrix in our set
(SHERMANS) and the second most dense one (SHERMAN2), we present in
this figure the execution time normalized by the time when maxncol=1.

When factorizing sparse matrices, we see that it is interesting to search for
big sets of compatible pivots. Regarding SHERMANDS, the sequential time when
fixing ncol=16 is over 45% less than the one we get when ncol=1. The variable
m reaches the value 26.7 with ncol1=36, although execution time is worse due to
wastage of time looking for compatible pivots. However, when factorizing more
dense matrices, such as SHERMAN?2, setting ncol to a large value is unproduc-
tive. For example, when ncol=48, we search for a large set of candidates which
later turned out to be incompatible due to high matrix density.



15 !
=—=a SHERMAN2 08 =—=a STEAM2

&—o SHERMAN5 e JPWHI91
07 | v— SHERMAN1
+—4 SHERMAN2

Eos6f +—+ LNS3937

Normalized time
[y
o

o
o

. . . . . . . .
0.0 20.0 40.0 60.0 ~0.0 20.0 40.0 60.0 80.0 100.0
maxncol maxdens (%)

(a) (b)

Fig. 1. Fixed ncol (a) and maxdens (b) influence on execution time

Finally, we have also studied execution time dependence with the threshold
maxdens which decides the switch to a dense code. In figure 1 (b) we show the
relation between maxdens and execution time for some matrices. Execution times
are normalized by the worst case (when there is no switch to a dense factorization
code, identified in the figure by maxdens=110). We see that the switch leads to a
significant execution time saving. Minimum execution times are obtained when
maxdens~/15%.

3.2 Comparison with the M A48 routine

Before studying the parallel algorithm performance, it 1s important to check that
the sequential version is good enough. The M A48 routine [10] is one of the generic
sparse system solver more widely used. The good performance of this routine is
mainly due to its left-looking organization which leads to low data traffic with
memory and a subsequent good exploitation of the cache. However, this left-
looking organization leads to low efficiencies in a loop level parallelized version
of the MA48. On the other hand, SpLU exhibits more loop level parallelism due
to the right-looking and parallel pivots organization, but should be comparable to
MA48 performances and execution time if we want to get a competitive generic
code.

In table 3 we present a comparison for the more significant characteristics of
both algorithms: execution time, factorization error and fill-in. Common param-
eters are set equally: u=0.1 and maxdens=15%.

We can see how the execution time ratio (M A48 time divided by SpLU time)
is greater than one, for five matrices (ratios in boldface). In these cases SpLU is
faster than M A48, reaching a 4.26 factor for the EX10HS matrix. However, for
the remaining 12 matrices M A48 is faster than SpLU, although the ratio do not
decrease below 0.5, except for WANG1, WANG?2, and LHR04C matrices. For
the latter, LHRO04C, factorization time in SpLU is clearly the worst, but this is
in exchange for a numerical error around 20 times better.

For 12 of the 17 matrices the factorization error in SpLU is better than in
the MA48 routine. For the remaining 5 matrices, there is never more than an



| Time | Error | Fill-in |
Matrix |SpLU71\/IA48 ratio | SpLUfl\/IA48| SpLU-MA48 |
STEAM2 1.10-.61 (0.55) 29E-13-.13E-11 79552-110466
JPWH991 1.05-.88 (0.84) .18E-14-.82E-13| 89810-101892
SHERMAN1 .37-.19 (0.51) .22E-12-.16E-12 4332043171
SHERMAN2| 6.87-16.7 (2.43)| .69E-6-.15E-5 | 325706-656307

EX10 7.49-24.51 (3.27)| .23E-6-.31E-6 | 283378-296270
ORANI678 9.23-6.48 (0.70) | .15E-12—.74E-13| 406568-439280
EX10HS 10.24-43.71 (4.26)| .72E-7-.20E-6 | 321031-336832

CAVITY10 | 51.78-25.94 (0.50)| .16E-9—-.36E-9 | 1139121-1087769

WANG1 46.99-21.18  (0.45) | .26E-12—.97E-13| 1124807-808989
WANG2 49.82-21.02  (0.42) |.4TE-13-.52E-13| 1178085-808989
UTM3060 42.30-26.13 (0.62) | .16E-8—.58E-8 |1066896-1073933
GARON1 69.73-35.07  (0.50) | .17E-8-.21E-8 | 1431657-1257874
EX14 131.75-206.63 (1.56)|.19E4+1-.93E+41|2293851-2658661
SHERMAN5| 8.69-11.02 (1.26)|.17E-12-.59E-12| 363186-519855
LNS3937 34.1-25.8 (0.75) | .95E-2-.13E-2 | 1078221-1002494

LHR04C 101.43-14.05 (0.13) | .89E-5-.16E-3 | 1988258-870784
CAVITY16 |193.46-109.86 (0.56)| .85E-9-.49E-9 | 2683852—2581086

Table 3. SpLU and MA48 comparison

order of magnitude of difference. With regard to fill-in, L and U matrices are
sparser on 9 occasions if they are computed by SpLU code.

In spite of the high optimization of the MA48 code, we believe that it can
be improved by the SpLU in some cases due to the analyse stage. Even when
the M A48 analyse stage is also based on Markowitz and threshold strategies, the
fact that this analyse stage takes place before factorizing has its own drawbacks:
permutation vectors are selected in advance, but during the factorize stage, the
numerical partial pivoting is also allowed and this may undo the analyse decisions
to some extent.

SpLU shows a joined analyse-factorize stage where for each iteration a proper
set of compatible pivots are selected over the candidates in the active matrix.
In many cases this enables a better pivot selection during factorization, yielding
better numerical precision. In exchange, the analyse fragment of code is more
expensive than the corresponding one in the MA48, due to 1t searching for a
single pivot instead of many which are mutually compatible.

3.3 Parallel performance

In this section we will compare the parallel algorithm execution time over a
P x @ processor mesh with the sequential version, executed over a single Alpha
processor. To make times comparable for both versions, input parameters will
be equally fixed. As we saw in subsection 3.1 it seems appropriate to set u=0.1
and a=4. As for the initial local ncol, it will be set to 16/Q), to make the initial
maximum number of compatible pivots independent of the mesh size.



Parallel version exhibits the same fill-in and factorization error as sequential
version, as u, a, and maxdens, do not affect the parallel version in a different
way to the sequential one.

Table 4 presents the speed-up we get when factorizing the 14 biggest matrices
in our set. The last three columns in this table show dimension, n, initial density,
po, and the final one, p,, . Figure 2 shows speed-up and efficiency when factorizing
the 9 computationally more expensive matrices for four mesh sizes.

Speed-up Density
Matriz 2 4 8 16 || n po Pn |
SHERMAN2| 1.85 3.62 5.98 9.82 1080 1.98% 27.92%
EX10 1.74 2.99 4.25 4.96 2410 0.94% 4.8™%
ORANI678 1.77 3.02 4.96 6.67 2529 1.41% 6.35%
EX10HS 1.74 3.65 5.39 5.63 2548 0.88% 4.94%
CAVITY10 1.94 3.72 5.59 8.77 2597 1.13% 16.88%
WANG1 2.16 3.76 7.01 10.44 2903 0.22% 13.94%
WANG?2 2.06 4.15 6.60 12.45 2903 0.22% 13.97%
UTM3060 1.88 3.41 5.87 10.07 3060 0.45% 11.39%
GARON1 2.32 3.76 7.18 12.02 3175 0.88% 14.20%
EX14 2.18 4.04 7.22 13.17 3251 0.63% 21.70%
SHERMAN5| 1.63 3.00 4.28 5.66 3312 0.19% 3.31%
LNS3937 1.93 3.69 6.33 11.01 3937 0.16% 6.95%
LHR04C 2.02 393 7.04 11.79 4101 0.49% 11.82%
CAVITY16 1.99 3.85 7.48 14.11 4562 0.66% 12.89%

Table 4. Speed-up for different mesh sizes

We see that speed-up monotonically increases with the number of proces-
sors. When changing from 8 to 16 processors, EX10 and EX10HS exhibit a less
notable increment of speed-up due to the low computational load presented by
these matrices. In these cases, communications dominate local computations and
messages comprise a small number of data, so latency prevails over communica-
tion bandwidth. We should take into account the high ratio between the power
of Alpha 21164-300Mhz and the 500Mbytes/s peak bandwidth and 0.5 to 2 us
latency for the shmem-put communication routine.

It is noteworthy that, contrary to dense LU factorization, the computational
load depends not only on the matrix dimension but also on the initial or (even
more) final density. This way, EX10, EX10HS, and SHERMANS5 are the only
matrices with p, <5% and with lowest speed-up on 16 processors.

Therefore, better speed-ups on 16 processors are reached for matrices with
high n and high p,,. The best speed-up is presented for CAVITY16. For some of
the bigger matrices, such as WANG1, WANG?2, and EX14, parallel factorization
exhibits super-lineal speed-up even for four processors.

Regarding the solve stage, we did not reach speed-up when using more than 4
processors. The reason is the low computational load presented by these matrices



SPEED-UP EFFICIENCY

SpLU (Cray T3E, SHMEM) SpLU (Cray T3E, SHMEM)
16
A——4A CAVITY10 5
- —-8 WANGL Z ] 100 g
@-© WANG2 o N
gl ¢ -—© utM3060 FE7
% - -~ GARON1 A8
+——+ EX14 i’ 80 [
V- — -V LNS3937 e =
o <—<1 LHRO4C AT S A——A CAVITY10
3 > CAVITY16 7 2 G- — -8 WANGL
g 4+ 7 g 60 @O WANG2
7% . ] == —0 UTM3060
“ E % - -k GARON1
7. w +——+ Ex14
P 40 V- — ¥ LNS3937
oL 7 <4—<1 LHRO4AC
D> CAVITY16
20
1 . . . 0 . . .
1 2 4 8 16 1 2 4 8 16
Number of Processors Number of Processors

Fig. 2. SpL.U speed-up and efficiency

for this step. The time expended on the solve stage never exceeded 0.3 seconds for
any of the 17 matrices (the more expensive is CAVITY16 expending 0.25 seconds
on this stage). Additionally, our solve stage comprises a sparse and a dense
part, and the last one can only exploit unidimensional parallelism. Therefore,
redistribution for the dense submatrix implies some overhead. In any case, the
parallel solve stage 1s worthwhile as it permits us to solve matrices which do not
fit on an single processor. Moreover, the parallel solve stage avoids collecting
the whole matrix in one processor. As future work we will try to reduce this
communication overhead by using a block cyclic distribution.

4 Related work

In this section we summarize recent works, organizing them according to the
level of parallelism. Regarding task level parallelism, Gallivan, Marsolf, and Wi-
jshoff (1996) [12] carry out a matrix reordering to a bordered block triangular
form. In the same direction, Zlatev et al. (1995) [19] have developed the tool
PARASPAR, to solve the linear system on shared memory multiprocessors. By
using a better reordering stage, LORA-P® code, the Y12M3 program achieves
speed-ups between 3.0 and 4.7 on 8 processors of the Alliant FX/80 [18].

Apart from reordering, another source of task parallelism is multifrontal or
supernode methods. As these methods were traditionally applied to symmetric
matrices, parallel cholesky multifrontal codes were quickly developed. Gupta,
Karypis, and Kumar (1995) [14] were the authors who reported probably the
best performance for the sparse cholesky.

A significant more difficult problem appears when matrices are not sym-
metric. Here, the supernode tree is the tool to exploit task level parallelism. A
parallel version of the SuperLU is presented by Li et al. [16], achieving on 8
processors shared memory machines, and for 21 unsymmetric sparse matrices,
an average speed-up of less than 4. Better results can be achieved on distributed
memory machines as recently shown by Fu, Jiao, and Yang (1998) [11]. However,



they have parallelized the factorize stage only, which can be executed in parallel
thanks to fill-in overestimation carried out on the analyse stage.

Regarding the loop level parallelism and parallel pivots approach, there are
some algorithms for shared memory machines: Alaghband (1995) [1], Davis and
Yew (1990) [5], and Zlatev et al. (1995) [19]. The experimental results of these
previous works lead us to conclude that actual system solver implementations
for shared memory multiprocessors hardly exceed 50% efficiency in 8 processors.

Better results are reached for distributed memory machines as presented by
Stappen, Bisseling, and van der Vorst (1993) [17] for a square Transputer mesh,
and by Koster and Bisseling (1994) [15] also for a transputer mesh. In these
codes, they do not present a switch to a dense code stage nor parallel solve
stage.

5 Conclusions

This work presents a complete tool, SpLU, to solve large nonsymmetric linear
systems on distributed memory multiprocessors. SpLU code comprises analyse-
factorize and solve stages. Both of them were split into sparse and dense steps
to avoid applying sparse techniques when fill-in turns the problem into a dense
one. The algorithm follows a generic approach exploiting loop-level parallelism
and takes advantage of matrix sparsity due to parallel pivoting selection. We
have compared sequential SpLU with another generic sequential nonsymmetric
sparse solver: the high optimized MA48 routine. Our SpLU code leads in many
cases to fewer numerical errors and fill-in than MA48 does. On the other hand,
MAA48 is usually slightly faster than the sequential SpLU, but to the best of
our knowledge MA48 can not be parallelized efficiently. Therefore, since SpLU
exhibits a high degree of parallelism, speed-up computed as MA48 sequential
time divided by parallel SpLU execution time is still competitive.

As far as we know, there 1s no published work for the whole parallel nonsym-
metric sparse system solver on current distributed memory machines, including
sparse analyse-factorize stage, switch to dense LU factorization stage, and for-
ward and backward substitution.

On the other hand, SpLU could be improved mainly in two areas. The first
is further reducing communication overhead by using a block cyclic distribution
instead of a cyclic one. The second one is directed at reducing data movements
and to make entries insertion easier using an unordered linked list both by rows
and columns. This two points joined with better care of cache exploiting would
result in higher performances.

Acknowledgements

We gratefully thank Tain Duff and all the members in the parallel algorithm team
at CERFACS, Toulouse (France), for their kind help and collaboration. We also
thank the CIEMAT (Centro de Investigaciones Energéticas, Medioambientales
y Tecnoldgicas), Spain, for giving us access to the Cray T3E multiprocessor.



References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

G. Alaghband. Parallel sparse matrix solution and performance. Parallel Comput-
ing, 21(9):1407-1430, 1995.

R. Asenjo and E.L. Zapata. Parallel pivots lu algorithm on the Cray T3E. Technical
Report UMA-DAC-99/01, Dept. of Computer Architecture, University of Mlaga,
Spain, http://www.ac.uma.es/, 1998.

E. Chu and A. George. Gaussian elimination with partial pivoting and load bal-
ancing on a multiprocessor. Parallel Comput., 5:65-74, 1987.

. T. A. Davis. A parallel algorithm for sparse unsymmetric LU factorization. PhD

thesis, Center for Supercomputing Research and Development, Univ. of Illinois,
Urbana, IL, September 1989.

. T. A. Davis and P. C. Yew. A nondeterministic parallel algorithm for general

unsymmetric sparse LU factorization. SIAM J. Matriz Anal. Appl., 11:383-402,
1990.

Tim Davis. Sparse matrix collection. At URL http://www.cise.ufl.edu/ davis/.
J.J. Dongarra, 1.S. Duff, D.C. Sorensen, and H.A. van der Vorst. Solving Linear
Systems on Vector and Shared Memory Computers. Society for Industrial and
Applied Mathematics, 1991.

[.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, Oxford, U.K., 1986.

[.S. Duff, R.G. Grimes, and J.G. Lewis. User’s guide for the Harwell-Boeing sparse
matrix collection (Release I). Technical report, CERFACS, Toulouse, France, 1992.
[.S. Duff and J.K. Reid. The design of MA48: A code for the direct solution
of sparse unsymmetric linear systems of equations. ACM Trans. Math. Softw.,
22(2):187-226, June 1996.

C. Fu, X. Jiao, and T. Yang. Efficient sparse lu factorization with partial piv-
oting on distributed memory architectures. IFEFE Transaction on Parallel and
Distributed Systems, 9(2):109-125, February 1998.

K. Gallivan, B. Marsolf, and H.A.G. Wijshoff. Solving large nonsymmetric sparse
linear systems using MCSPARSE. Parallel Computing, 22(10):1291-1333, 1996.
G. A. Geist and C. H. Romine. LU factorization algorithm on distributed-memory
multiprocessor architecture. SIAM J. Sci. Statist. Comput., 9:639-649, 1989.

A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for sparse
matrix factorization. IEEE Transactions on Parallel and Distributed Systems, 8(5),
1995. Available at URL: http://www.cs.umn.edu/~kumar.

J. Koster and R.H. Bisseling. An improved algorithm for parallel sparse LU de-
composition on a distributed memory multiprocessor. In J.G. Lewis, editor, Fifth
SIAM Conference on Applied Linear Algebra, pages 397-401, 1994.

X. Li. Sparse Gaussian Flimination on High Performance Computers. PhD thesis,
CS, UC Berkeley, 1996.

A. F. van der Stappen, R. H. Bisseling, and J. G. G. van de Vorst. Parallel sparse
LU decomposition on a mesh network of transputers. SIAM J. Matriz Anal. Appl.,
14(3):853-879, July 1993.

A.C.N. van Duin, P.C. Hansen, T. Ostromsky, H.A.G. Wijshoff, and Z. Zlatev.
Improving the numerical stability and the performance of a parallel sparse solver.
Computers Math. Applic., 30:81-96, 1995.

7. Zlatev, J. Wasniewski, P.C. Hansen, and T. Ostromsky. PARASPAR: a package
for the solution of large linear algebraic equations on parallel computers with shared
memory. Technical Report 95-10, Tech. Univ. Denmark, Lyngby, 1995.



