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Abstract. Solving large nonsymmetric sparse linear systems on dis-
tributed memory multiprocessors is an active research area. We present a
loop-level parallelized generic algorithm which comprises analyse-facto-
rize and solve stages. To further exploit matrix sparsity and parallelism,
the analyse step looks for a set of compatible pivots. Sparse techniques
are applied until the reduced submatrix reaches a threshold density. At
this point, a switch to dense routines takes place in both analyse-factorize
and solve stages. The SPMD code follows a sparse cyclic distribution to
map the system matrix onto a P x () processor mesh. Experimental re-
sults show a good behavior of our sequential algorithm compared with a
standard generic solver: the M A48 routine. Additionally, a parallel ver-
sion on the Cray T3E exhibits high performance in terms of speed-up
and efficiency.

1 Introduction

The kernel of many computer-assisted scientific applications is to solve large
sparse linear systems. We find examples of these kinds of applications in opti-
mization problems, linear programming, simulation, circuit analysis, fluid dy-
namic computation, and numeric solutions of differential equations in general.

Furthermore, this problem presents a good case study and is a representative
computational code for many other irregular problems. More precisely, this prob-
lem represents those in which the computational load grows with the execution
time (fill-in) and matrix coefficients change its coordinates due to row/column
permutations (pivoting).

We say that a matrix is sparse if it is advantageous to exploit its null elements
with the development of a sparse version of an algorithm, instead of a dense one.
This way, using sparse techniques is justified when sparsity is big enough, and
when it remains more or less constant during the process. However, if the matrix
suffers from fill-in it will be worthwhile to combine sparse and dense approaches:
we should choose the point in the code in which 1t will be advantageous to switch
to a dense code.

* The work described in this paper was supported by the Ministry of Education and Science (CI-
CYT) of Spain under project TIC96-1125-C03, by the European Union under contract BRITE-
EURAM III BE95-1564, by the Human Capital and Mobility programme of the European Union

under project ERB4050P1921660, and by the Training and Research on Advanced Computing
Systems (TRACS) at the Edinburgh Parallel Computing Centre (EPCC)



Therefore, our unsymmetric sparse system solver algorithm follows sparse
processing techniques until the reduced submatrix reaches a certain threshold
density. At this point, we switch to a parallel dense LU factorization code which
applies partial pivoting and uses BLAS as much as possible. Forward and back-
ward substitution are also parallelized, taking into account that there should
be sparse and dense versions for both stages. The algorithm is mapped onto a
two-dimensional mesh by a sparse cyclic distribution.

Experimental results will be conducted on a Cray T3E with 16 DEC 21164
(Alpha EV-5) processors at 300 MHz with a peak performance of 600 Mflops
per processor. We have used shmem-put as communication routines on this dis-
tributed memory machine. The unsymmetric sparse matrices used to test our
algorithm are taken from Harwell-Boeing and University of Florida sparse ma-
trices collections. In addition, we have compared our sequential code with a
standard generic sparse solver: the MA48 routine developed by Duff and Reid
[17]. We also want to present some comparisons with UMFPACK and SuperLU
codes, and test the parallel algorithm with a bigger number of processors, for
the final version of this paper.

The next section presents some background and alternatives to solve sparse
linear systems, justifying the selection of the alternative presented in this work.
Section 3 gives a summarized description of this complex code, avoiding deep
implementation details for the sake of shortness. Experimental results, validating
the sequential code, comparing with the MA48 routine, and presenting paral-
lel performance, comprise section 4. Finally, the related work and conclusions
section close the paper.

2 Sparse systems solving methods

Let us present the linear system of n equations as:
Ar =1 (1)

where A is a non-singular unsymmetric sparse matrix of dimensions n X n with
o = ¢ - n nonzero elements (entries), so that a < n?. This way, ¢ represents
the average number of entries per row (or column). The density of the matrix is
p = a/n?, and sparsity can be defined as ¢ =1 — p.

One possible classification for the alternatives we find to solve equation 1, is
the following:

Tterative
Frontal
Direct Multifrontal
Supernode
Generic

Iterative solvers are attractive in many situations due to the lack of dependen-
cies in the sparse matrix-vector multiplication (its kernel), making the parallel



implementation of the code easy. However, there is no one single iterative method
robust enough to solve all sparse linear systems accurately and efficiently.

We will focus on those methods based on Gaussian elimination (direct meth-
ods), and particularly on the LU factorization of the sparse matrix: [TAI' = LU,
where IT and I are permutation matrices, and L and U are lower and upper tri-
angular matrices, respectively. In more detail, if we call 7 and v the permutations
vectors, the necessary steps to solve the system are:

1. Factorize A so that A, ,, = (LU);; Vi,j, 1<14,j <n. We obtain the L
and U matrices and corresponding permutation vectors, = and ~.

Permute b following d; = b,,, 1 < ¢ < n, to obtain the vector d.

Solve the system Ly = d to obtain y (forward substitution).

Solve the system Uz = y, to obtain z (backward substitution).

Permute z following ., = z;, 1 < j < n, resulting in the solution vector .

O W N

As we see in the previous classification, from the algorithmic point of view,
there are four approaches to solve LU factorization. Frontal schemes can be re-
garded as an extension of band or variable-band schemes and will perform well
on systems whose bandwidth or profile is small. The multifrontal scheme is an
extension of the frontal method. At the beginning, this extension permits effi-
ciency for matrices with symmetric or nearly symmetric pattern. More recent
works present multifrontal LU factorization for unsymmetric sparse matrices
such as UMFPACK [11]. Another nonsymmetric system solver is based on su-
pernode techniques: the SuperLU [13] code is a left-looking, blocked algorithm
which includes symmetric structural reduction for fast symbolic factorization,
and supernode-panel updates to achieve better data reuse in cache using BLAS.

Finally, there are the generic approaches (such as MA48 [17] or Y12M [33]),
with the following main characteristics:

— The pivot selection stage aims to preserve sparsity and to guarantee numer-
ical stability.

— Do not impose any restriction on the system matrix.

— The sparse data structure 1s used on the whole code, even on the innermost
loop.

— The loop structure in the sparse generic codes is similar to the dense coun-
terparts, but these loops traverse sparse data structure instead of dense ones.

The last two i1ssues led us to focus on these generic methods. In general, we can
say that multifrontal and supernode codes convert a sparse problem into a dense
subproblems hierarchy. This way they profit from the good behavior of dense
codes (regularity, exploiting the cache, etc). On the other hand, it seems to us a
more provocative challenge to solve a sparse problem as is, instead of avoiding
it by turning it into a collection of dense subproblems. This way we will be able
to study dynamic data structures, pivoting and fill-in issues, and solutions to
other problems which can be extrapolated to many other irregular algorithms.
Moreover, as the computational kernel of the generic codes reside in three nested
loops (as in dense LU factorizations), the problem can be parallelized at the



loop level. That means, that we could face this sparse generic problems from the
data-parallel compilers point of view in which we are interested [4,5]. As far as
we know, the parallel versions for multifrontal or supernode codes only exploit
parallelism at the task level [18,26] which is more sensitive to load balance and
scalability problems.

2.1 Loop level parallelism

To exploit loop level parallelism presents some advantages. A loop level paral-
lelized code has the same structure as the sequential code except for these two
issues:

— Iteration space for parallel loops is reduced according to the number of pro-
Cessors.
— To solve data dependencies some communication stages may be inserted.

This way the parallel code is a generalization of the sequential one. In these
cases, we can try to write this kind of code using some data parallel language
(such as HPF-2 [22]) which simplifies the development tool. Moreover, loop level
parallelized codes are less sensitive to load balance and scalability problems than
task level parallelism (in which tasks may have unbalance computational loads
and some processors become idle when there are not enough tasks).

In the right-looking LU factorization we can parallelize the two internal
nested loops. Additionally, the sparsity of matrix A give us a degree of free-
dom to choose the pivots with the aim of achieving more parallelism. This idea
comes from the compatible pivots definition presented by Calahan (1973) [6]:
two matrix entries a;; and a,, are compatible if a;; and a,; are zero. By choos-
ing a set of m compatible pivots we will be able to apply a parallel m-rank update
of the reduced submatrix instead of m sequential 1-rank updates.

This way, the factorization process consists of three steps for each outermost
loop k 1teration: to look for a set of m compatible pivots in the active matrix at
this k iteration, A*); carry out a maximum of m row and column permutations
(full pivoting) to put selected pivots on the diagonal; and finally perform the
m-rank update of the reduced submatrix, as shown in figure 1. For the next k
iteration, the reduced submatrix will be the new active matrix.

2.2 Phases of the sparse linear system solution

Given the complexity presented on the sparse linear system, it 1s usual to divide
the problem into four phases:

1. Reordering: Aimed to reduce the computational complexity of the forth-
coming stages. For example, if we reorder the original matrix A in a block
triangular or block diagonal matrix, we can factorize each irreducible block
of the resulting reordered matrix in parallel. We will assume our code will
work with already irreducible block matrices.
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Fig. 1. Steps of the parallel pivots algorithm: (a) Selection of compatible pivots; (b)
parallel permutations; (c) m-rank update

2. Analyse: Aimed to determine the permutation matrices II and I" which are
going to select which coefficients of matrix A will be placed on the diago-
nal (i.e., pivots). To fulfill the sparsity preservation constraint we will follow
the Markowitz strategy [27]. On the other hand, we will ensure the numer-
ical stability selecting pivots with an absolute value greater than a certain
threshold.

3. Factorize: The most computationaly expensive stage, in which the factor-
ization [T A" = LU takes place.

4. Solve: Comprises forward and backward substitution.

Due to the full pivoting necessities in our algorithm, the analyse and factorize
stage are joined into a single analyse-factorize stage. This means that, for each
outermost loop iteration k of the analyse-factorization process, we first determine
the pivot set (analyse), followed by the update process (factorize).

Additionally, analyse-factorize and solve stages will be further divided into
sub-stages: due to the fill-in which takes place on the reduced submatrix, it will
be worthwhile to switch to a dense code at some k iteration (i.e., when the
density of the reduced matrix exceeds a threshold input parameter).

This way we will implement a sparse analyse-factorize code followed by a
dense one, with a switch routine between them, to change the sparse data struc-
ture to a regular two-dimensional dense array. Obviously, the solve stage will be
similarly split: sparse forward and dense forward substitution ended by dense
backward and sparse backward substitutions. We will use BLAS for the dense
subroutines and show in the experimental results that the switch overhead is
negligible in comparison to the time saved when avoiding factorizing a quite
dense submatrix with a sparse code.

3 Parallel sparse LU Factorization

In this section we present a parallel algorithm for the sparse generic linear system
solver, called SpLU. The main characteristics of this code are:



— The algorithm is right-looking. The code, written in C; is SPMD and is de-
signed for a distributed memory multiprocessor. There is a portable version
thanks to the MPI message passing interface, and a more optimized one for
the Cray T3D or T3E using the SHMEM library.

— Data distribution follows the two dimensional sparse cyclic scheme (scatter),
mapping the system matrix A onto a P x () processor mesh.

— The data structure used to store local matrices 1s a semi-ordered two-dimen-
sional doubly linked list. Entries are linked in an ordered way by rows and
by columns in any order.

— We exploit both inherent parallelism in the updating loops and the paral-
lelism we achieve by selecting m compatible pivots. Analyse and factorize
stages are joined into a single analyse-factorize one.

— We use a threshold-based heuristic to ensure numerical stability, and the
Markowitz criterion (min row in min column) to preserve sparsity. The num-
ber of columns in which we search for compatible pivots change according
to matrix density in an adaptive way. Explicit full pivoting reduces the un-
balancing problems [7,20].

— When matrix density reaches certain threshold, we switch to a parallel dense
LU factorization code.

— The solve stage is also a parallel phase.

In the parallel sparse factorization, the sequential outermost loop, k, nests the
three mentioned parallel stages: look for a set of m compatible pivots, called
PivotSet; parallel rows and columns permutations; and reduced submatrix up-
date.

Apart from the data structure for matrix A, we will need two additional
nonzero count vectors, R and C', of dimension n, to implement the Markowitz
strategy. The value Rl(k) represents the number of entries in row i of active
matrix at iteration k, whereas the number of entries in active column j for the

same iteration is indicated by C'](»k).

Vectors C'¥) or R*) are also used to decide the switch iteration to a dense
factorization code. Active submatrix density, dens, is calculated at each k iter-
ation as dens= (Z?:_kl R®))/(n — k). When dens>maxdens, where maxdens is
an input parameter;, and n—k is big enough to compensate the data structure
change, the switch to a dense code takes place.

On the other hand, 7 and ~ will be the permutation vectors needed for
the forthcoming solve stage. When Fl(k)
r from the original matrix A(?) is now placed at row i in matrix AK) (and
analogously for column permutation vector 5, changing row for column). As
program is written in C, the space iteration for all indices mentioned in these
paragraphs, i, j and k, are from zero to n — 1.

—r this means that at iteration k, row

3.1 Distribution scheme

Matrix A will be distributed cyclically over a P x () processor mesh. The pro-
cessor will be identified by its coordinates (p,¢), with 0 <p < P and 0 < ¢ < Q.



That is, the matrix entries will be assigned to processors following this equation:
A;; — PE(imod P, jmod Q) Vi, j, 0<4d,j<n. (2)

This sparse cyclic (also scatter or grid) distribution will lead to even distributions
when the probability of a nonzero coefficient is independent of its coordinates.
This is true for random pattern matrices and for those which do not present
periodicities on entry coordinates’. Additionally, scatter distribution will spread
clusters of entries on different processors.

Permutation vectors, m and ~ will be partially replicated. That is, we will
store m; on processors with coordinates (i mod P, #), where  represents any
integer value between zero and @) — 1. Similarly, v; will be replicated by rows.
Vectors R and C' will be distributed in the same way as m and =, respectively.

We will call A to the local matrix of dimensions 1 x 7, where 1m = [n/P],
and 7 = [n/Q]. Therefore, on processor (p,q), the relationship between A and
A will be given by the following equation:

Aiz = Aipypigre V4,0, 0<iP4p,jQ +q<n. (3)

On the other hand, we should select a proper data structure to store system
matrix entries. We will call the combination of these two aspects (data structure
+ data distribution) the distribution scheme. The distribution scheme comprises
all the information we need to localize any matrix entry on the local memories of
the multiprocessor system. Maintaining the same data structure of the sequential
code in the parallel one, leads to the parallel code being a generalization of the
sequential one.

To chose the data structure we should take into account that in our algo-
rithm we implement a full-pivoting stage. This reduces the sets of possible data
structures to those with permit access by rows and columns. We have selected
a two dimensional doubly linked list (LLRCS), which links entries of the same
row 1n an orderly way, and entries of the same column in any order. We will
also use two pointer vectors to point to the first entry on each row, rows, and
column, cols. Each entry on the list stores the coefficient value, local indices
and pointers to the previous and next entries in the same row and column. The
C data structure declaration follows:

struct matriz {
struct enlry xrows[m], xcols[n];
};
struct entry  {
int Row,Col;
double Val;

struct entry spreve, xprevy, xnexts, xnexty;

b

! Only periodicities of non prime period with the number of processors can lead to
unbalanced distributions.



Due to the doubly linked structure, we simplify the delete operation of entries,
needed in explicit permutations. However, the wastage of memory due to storage
of pointers is evident. We show in figure 2 an example of this distribution scheme
for a sparse matrix with n = 8 and @ = 24 mapped onto a 2 x 2 processor mesh.

3.2 Right-looking parallel algorithm

A more detailed description of the algorithm follows:

1. m = v = identity;

2. Initialize R and C; Compute dens

3. k = 0;

4. while ( (k<n) && (dens<maxdens))

5. Search for parallel pivots: PivotSet = (ir,7,) : 0 <r < m;
6. Parallel row permutations, w;, and R; : 0<r <m;

7. Parallel column permutations, ;. and Cj,. : 0 <r <m;
8. Update A ;

9. Update nonzero count vectors R and C;

10. k =k + m;

11. Dense submatrix factorization;

12. Solve (forward and backward substitution)

In this code, we implicitly assume that each processor, (p,¢), does the compu-
tations over its local data. At the end of the in-place algorithm, matrix A—1)
stores coefficients of matrix L and U, vectors 7(»~1) and (=1 contain its final
values, and vector x will be the solution to equation Az = b.

Parallel pivot search. It is well known that for a selected pivot AZ(»?), the

2
1)(0}“ —1), where Mi(f) is the Markowitz count at iteration k for the mentioned
pivot.

Therefore, to preserve sparsity, selected pivots would have a minimum Mar-
kowitz count and a maximum absolute value to ensure stability. On the other
hand this search 1s prohibitive, as one needs to visit the whole active matrix. To
keep the search for compatible pivots effective and simple, we will only search in
the ncol columns with the least C'*)

maximum number of new entries that can be created may be Mi(f) = (R(»k) —

in each column of the processor mesh. In

J
these columns we will select candidates to be pivots to those with minimum Rl(k)

(min row in min column technique) and complying wiht the following equation
to ensure numerical stability:

k k
AR ] > w - max] A (4)

Input parameter u: 0 < u < 1, will prioritize stability when u — 1, or sparsity
when u — 0.

From the candidate sets of pivots, we will mark incompatible ones, and pick
up compatibles to build PivotSet with m parallel pivots. To control sparsity, an



(]

(@oomo ofgo]
0 0 0[do[E[f o
ofg o o o o0[f
MoooKOOM
00 0 M@ 0 0
Plo[@OoOo0[Fo o0
[so: 0 [fu o0o:0 0
00 0MWO 0

012345¢67

a

[\lm(ﬂwaPO]

Y
c[l 5 3 3 )

cols(Cm= - - -)

v(1 3 5 7]

Fig. 2. Distribution scheme LLRCS-Scatter



additional input parameter a will be used to reject pivots with an unacceptable
Markowitz count. In particular, candidates with M;; > a-M;, ;, will be rejected,
where M;, ;, is the minimum Markowitz count of the candidates.

Another issue is related with the fill-in that takes place during factorization.
When active matrix density increases, looking for parallel pivots tends to be
unproductive. For this reason, initially, ncol contains the number of columns
per processor in which the search for candidates is performed, but this ncol
parameter will change dynamically during factorization, automatically adapting
to the density.

Parallel permutations. This stage is in charge of moving selected compatible
pivots to the diagonal, building the mxm diagonal block, as shown in figure 1
(b). Permutation can be done explicitly (i.e., moving row and column entries
[29,7,1]) or implicitly (using permutation vectors 7 and v to indirectly access
the matrix [28,30]). In parallel implementations, it has been observed [7,20]
that explicit pivoting leads to better load balance. Performance increases due
to this fact, and compensates communication overheads due to row and column
movement.

Parallel update. The reduced submatrix update process comprises two dif-
ferent steps: first, we divide, in parallel, subcolumns under the diagonal block
following this equation:

(k) — pR) A (R) e s - ; (k)
Ayt = A AGY VLG (kAm <i<n)A(R<j<k+m)A (4 £0) (5)

L7

In a second step, we properly update the reduced submatrix with:

(k+m <i,j <n)
AW — 40 AR 48y s (R << b+ m) (6)
i 1] 1 lj ) (k)
(A #0)A (A" #0)

To carry out equation b in parallel, a previous communication stage (broadcast
by mesh columns) is necessary to make pivots visible to processors who are going
to divide its local columns. In the same broadcast we will pack the block of rows
needed in the forthcoming update (figure 3 (a)).

In a similar way, to complete equation 6, the broadcast (by mesh rows) of a
block of previously divided columns is carried out (figure 3 (b)).

Parallel switch and dense factorization. When we reach the threshold
submatrix density (maxdens) and this submatrix is big enough, we proceed to
switch to a dense factorization code. Clearly, we initially need to change the
data structure for the final active submatrix A®*), from the linked list to a
bidimensional regular array, AD, with dimensions (nd x nd) where nd = n — k.
This operation is fully parallel (without communications) and, when finished,
the AD matrix remains automatically distributed in a cyclic way.
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Subsequently, we are ready to call to a parallel dense factorization routine.
The one we have designed provides for row partial pivoting to ensure numerical
stability and uses BLAS-2 as much as possible.

Parallel solve stage. Even when the stages which solve LUz = b is two or
three orders of magnitude faster than the factorization stages, it is sometimes
worthwhile to parallelize it. For example, optimization problems like simplex or
iterative solvers such as ILU preconditioned Conjugate Gradient, needs to solve
many forward and/or backward substitutions.

As the analyse-factorize stage switches at a certain iteration to a dense code,
the solve stage switches at the same one. However, for the sake of shortness
we will only focus on sparse forward substitution, as the dense solve stage is
sufficiently well known and sparse backward substitution is similar to the forward
one.

The forward substitution algorithm, Ly = b, can be outlined by the following

equation:
1 i—1
vi= o |:bi - Zlijyj] (7)
v j=1

As we can see, there 1s a flow dependence for index i, as y; may only be computed
when coeflicients g1, - - -, yi—1 are known, if [;; #0, 1 < j < ¢. However, if the
L matrix is sparse, many of the [;; coefficients are zero, and many unknowns
may be computed in parallel. In fact, coefficients y;, - - -, ¥;+m are independents
if pivots A;;, -+, Aiym,i+m are compatible and belong to the same diagonal



block, as shown in figure 4. In terms of loop level parallel programming, we can
carry out the execution of loops with indices ¢ and j in parallel, while maintaining
the bidimensional L matrix distribution.
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Fig. 4. Data flow in the forward substitution

4 Experimental results

This section aims to analyse the sequential and parallel behavior of our SpLU
algorithm, when changing the input matrix characteristics and some of the input
parameters. We have selected some heterogeneous unsymmetric sparse matrices
from Harwell-Boeing [16] and the University of Florida [12] matrix collection,
presented in table 1. The algorithm has been implemented in C. As a message-
passing interface, SHMEM routines have been used as they are supported by the
CRAY T3E supercomputer. The sequential version of the program is obtained by
simplifying the parallel code, removing all redundant or never executed sentences

when P=1and Q = 1.

4.1 Fill-in and stability

Two input parameters can be tuned to control stability and fill-in: u and a.

A study of u parameter incidence is presented in table 2. We can see the
variation of the average size of diagonal blocks ™, the number of sparse LU
iterations, fill-in and factorization errors, for different u values. For the sake of
brevity, we present these results for the LNS3937 matrix. Other matrices show
the same behavior, but the LNS3937 is the worst conditioned and the u effect
can be better appreciated. In the experiment we fixed a= 4 and ncol= 16.

In table 2 we can see that the smaller u is, the bigger is the average size
of PivotSet, allowing us to exploit more parallelism. The same effect can be
appreciated in the next row, due to increasing m, so decreasing the number of



[Matrix [Origin | n | o [Density (p)]
STEAM2 Oil recovery 600 | 13760 3.82%
JPWH991  |Circuit physics modeling 991 | 6027 0.61%
SHERMANT1|OIil reservoir modeling 1000| 3750 0.37%
SHERMANZ2|Oil reservoir modeling 1080 23094 1.98%
EX10 2D isothermal seepage flow 2410| 54840 0.94%
ORANI678  |Economic modeling 2529| 90158 1.41%
EX10HS 2D isothermal seepage flow 2548| 57308 0.88%
CAVITY10 |Driven cavity problem 2597| 76367 1.13%
WANG1 Discretized electron continuity|2903| 19093 0.22%
WANG?2 Discretized electron continuity|2903| 19093 0.22%
UTM3060 |Uedge test matrix 3060( 42211 0.45%
GARON1 2D FEM, Navier-Stokes, CFD [3175| 88927 0.88%
EX14 2D isothermal seepage flow 3251| 66775 0.63%
SHERMANS5|Oil reservoir modeling 3312 20793 0.19%
LNS3937 Compressible fluid flow 3937| 25407 0.16%
LHR04C Light hydrocarbon recovery |4101| 82682 0.49%
CAVITY16 |Driven cavity problem 4562|138187 0.66%
Table 1. Test matrices

[Values foru | 0.9 0.5 0.1 0.05 001 0.001

m 5.84 6.17 6.85 6.90 7.28 8.48

Sparse iterations 493 475 429 420 410 349

283772 250748 241163 222655 216017 216196
2.32E-2 1.05E-2 9.56E-3 2.27E-2 2.57E-2 4.02E-1

Fill-in

Error

Table 2. The influence of the u parameter on LNS3937

outermost loop iteration, thus reducing both sequential and parallel execution
time. Additionally, fill-in is reduced when u diminished, as there are more can-
didates to choose from with a smaller Markowitz count. On the other hand, the
factorization error increases when reducing u, which leads to the necessity of
choosing a trade-off value. Furthermore, we have observed that the more density
is achieved on factors L and U, the bigger is the factorization error, as the num-
ber of floating point operations increases. For this reason, for u= 0.1 we get the
minimum error. These experiments corroborate that the trade-off uas 0.1 [15, 14]
leads to good results in many situations. In any case, the best selection of u is
problem dependent, so we may need to test some u values to find the best one.

The algorithm behavior as a function of the a input parameter is shown in
table 3 for the same matrix LNS3937, with u= 0.1 and ncol= 16.

The greater a is, the bigger will be the average size of the compatible pivots
set, and the less the number of sparse iterations. At the same time, if we do not
limit the Markowitz count, we can select pivots which will bring about more fill-



Values for a 10 8 6 4 2 1

m 8.38 7.91 7.69 6.85 4.27 1.84
Sparse Iterations 361 377 384 429 687 1611
Fill-in 254176 251622 245374 241163 238923 220624

Table 3. The influence of the a parameter on LNS3937

in. To keep a high m without provoking an excessive fill-in, the trade-off value
for a will be around 4 (also selected by other authors [9,25]).

As ncol value is dynamically adjusted during program execution, the initial
value is not specially significant. In any case, we found an appropriate initial
value ncol=16.

Searching for a parallel pivots set is worthwhile even in the sequential code,
as we can see in figure 5 (a), where we study the execution time versus the
value of maxncol. In this experiment we have fixed ncol=maxncol, cancelling
the adaptive function to update ncol. For the more sparse matrix in our set
(SHERMANS) and the second most dense one (SHERMAN2), we present in
this figure the execution time normalized by the time when maxncol=1.
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Fig. 5. Fixed ncol (a) and maxdens (b) influence on execution time

When factorizing sparse matrices, we see that it is interesting to search for
big sets of compatible pivots. Regarding SHERMANDS, the sequential time when
fixing ncol=16 is over 45% less than the one we get when ncol=1. The variable
m reaches the value 26.7 with ncol1=36, although execution time is worse due to
wastage of time looking for compatible pivots. However, when factorizing more
dense matrices, such as SHERMAN?2, setting ncol to a large value is unproduc-
tive. For example, when ncol=48, we search for a large set of candidates which
later turned out to be incompatible due to high matrix density.



Finally, we have also studied execution time dependence with the threshold
maxdens which decides the switch to a dense code. In figure 5 (b) we show
the relation between maxdens and execution time for some matrices. Execution
times are normalized by the worst time (when there is no switch to a dense
factorization code, identified in the figure by maxdens=110). We see that the
switch leads to a significant execution time saving. Minimum execution times
are obtained when maxdens~15%.

4.2 Comparison with the M A48 routine

Before studying the parallel algorithm performance, it 1s important to check that
the sequential version is good enough. The generic sparse system solver more
widely used is the MA48 routine [17]. The good performance of this routine is
mainly due to its left-looking organization which leads to low data traffic with
memory and a subsequent good exploitation of the cache. However, this left-
looking organization leads to low efficiencies in a loop level parallelized version
of the MA48. On the other hand, SpLU exhibits more loop level parallelism due
to the right-looking and parallel pivots organization, but should be comparable to
MA48 performances and execution time if we want to get a competitive generic
code.

In table 4 we present a comparison for the more significant characteristics of
both algorithms: execution time, factorization error and fill-in. Common param-
eters are set equally: u=0.1 and maxdens=15%.

We can see how the execution time ratio (M A48 time divided by SpLU time)
is greater than one, for five matrices (ratios in boldface). In these cases SpLU is
faster than M A48, reaching a 4.26 factor for the EX10HS matrix. However, for
the remaining 12 matrices M A48 is faster than SpLU, although the ratio do not
decrease below 0.5, except for WANG1, WANG?2 and LHR04C matrices. For the
latter, LHR04C, factorization time in SpLU is clearly the worst, but this is in
exchange for a numerical error around 20 times better.

For 12 of the 17 matrices the factorization error in SpLU is better than in
the MA48 routine. For the remaining 5 matrices, there is never more than an
order of magnitude of difference. With regard to fill-in, L and U matrices are
sparser on 9 occasions if they are computed by SpLU code.

In spite of the high optimization of the MA48 code, we believe that it can
be improved by the SpLU in some cases due to the analyse stage. Even when
the M A48 analyse stage is also based on Markowitz and threshold strategies, the
fact that this analyse stage takes place before factorizing has its own drawbacks:
permutation vectors are selected in advance, but during the factorize stage, the
numerical partial pivoting is also allowed and this may undo the analyse decisions
to some extent.

SpLU shows a joined analyse-factorize stage where for each iteration a proper
set of compatible pivots are selected over the candidates in the active matrix.
In many cases this enables a better pivot selection during factorization, yielding
better numerical precision. In exchange, the analyse fragment of code is more



| Time | Error | Fill-in |
Matrix  [SpLU-MA4S ration| SpLU-MA48| SpLU-MA4S |
STEAM2 1.10-.61 (0.55) [.29E-13—.13E-11] 79552110466
JPWH991 1.05-.88 (0.84) [.18E-14-.82E-13] 89810-101892
SHERMAN1|  .37-.19 (0.51) | .22E-12-.16E-12]  43320-43171
SHERMAN2| 6.87-16.7 (2.43)| .69E-6-.15E-5 | 325706656307
EX10 7.49-2451 (3.27)| .23E-6-.31E-6 | 283378-296270
ORANI678 | 9.23-6.48  (0.70) | .15E-12—.74E-13| 406568-439280
EX10HS 10.24-43.71 (4.26)| .72E-7-.20E-6 | 321031-336832
CAVITY10 | 51.78-25.94 (0.50) | .16E-9-.36E-9 | 1139121-1087769
WANG1 46.99-21.18  (0.45) | .26E-12-.97E-13| 1124807-808989
WANG?2 49.82-21.02  (0.42) |.47TE-13-.52E-13| 1178085-808989
UTM3060 | 42.30-26.13 (0.62) | .16E-8-.58E-8 |1066896-1073933
GARON1 | 69.73-35.07 (0.50) | .17E-8—.21E-8 | 1431657-1257874
EX14 131.75-206.63 (1.56)|.19E+1-.93E+1|2293851-2658661
SHERMAN5| 8.69-11.02 (1.26)[.17E-12-.59E-12| 363186-519855
LNS3937 34.1-258  (0.75)| .95E-2-.13E-2 | 1078221-1002494]
LHR04C  |101.43-14.05 (0.13) | .89E-5-.16E-3 | 1988258-870784 |
CAVITY16 [193.46-109.86 (0.56) | .85E-9-.49F-9 | 2683852-2581086|

Table 4. SpLU and MA48 comparison

expensive than the corresponding one in the MA48, due to 1t searching for a
single pivot instead of many which are mutually compatible.

4.3 Parallel performance

In this section we will compare the parallel algorithm execution time over a
P x @ processor mesh with the sequential version, executed over a single Alpha
processor.

To make times comparable for both versions, input parameters will be equally
fixed. As we saw in subsection 4.1 it seems appropriate to set u=0.1 and a=4.
As for the initial local ncol, it will be set to 16/@Q), to make the initial maximum
number of compatible pivots independent of the mesh size.

Parallel version exhibits the same fill-in and factorization error as sequential
version, as u, a and maxdens, do not affect the parallel version in a different way
to the sequential one.

Table 5 presents the speed-up we get when factorizing the 14 biggest matrices
in our set. The last three columns in this table show dimension, n, initial density,
po, and the final one, p,, . Figure 6 shows speed-up and efficiency when factorizing
the 9 computationally more expensive matrices for mesh sizes.



Speed-up Density

|Matriz 2 4 8 16| n po Pn
SHERMAN2|1.85 3.62 5.98 9.82([1080 1.98% 27.92%
EX10 1.74 2.99 4.25 4.96(|2410 0.94% 4.87%

ORANI678 (1.77 3.02 4.96 6.67|(2529 1.41% 6.35%
EX10HS 1.74 3.65 5.39 5.63|(2548 0.88% 4.94%
CAVITY10 |1.94 3.72 5,59 8.77(|2597 1.13% 16.88%
WANG1 2.16 3.76 7.01 10.44(|2903 0.22% 13.94%
WANG2 2.06 4.15 6.60 12.45([2903 0.22% 13.97%
UTM3060 |1.88 3.41 5.87 10.07|[3060 0.45% 11.39%
GARON1 2.32 3.76 7.18 12.02||3175 0.88% 14.20%
EX14 2.18 4.04 7.22 13.17||3251 0.63% 21.70%
SHERMAN5(1.63 3.00 4.28 5.66(13312 0.19% 3.31%
LNS3937 1.93 3.69 6.33 11.01{|3937 0.16% 6.95%
LHR04C 2.02 3.93 7.04 11.79([4101 0.49% 11.82%
CAVITY16 [1.99 3.85 7.48 14.11|[4562 0.66% 12.89%

Table 5. Speed-up for different mesh sizes

We see that speed-up monotonically increases with the number of proces-
sors. When changing from 8 to 16 processors, EX10 and EX10HS exibit a less
notable increment of speed-up due to the low computational load presented by
these matrices. In these cases, communications dominate local computations and
messages comprise a small number of data, so latency prevails over communica-
tion bandwidth. We should take into account the high ratio between the power
of Alpha 21164-300Mhz and the 500Mbytes/s peak bandwidth and 0.5 to 2 us
latency for the shmem-put communication routine.

It is noteworthy that, contrary to dense LU factorization, the computational
load depends not only on the matrix dimension but also on the initial or (even
more) final density. This way, EX10, EX10HS and SHERMANb) are the only
matrices with p, <5% and with lowest speed-up on 16 processors.

Therefore, better speed-ups on 16 processors are reached for matrices with
high n and high p,,. The best speed-up is presented for CAVITY16. For some of
the bigger matrices, such as WANG1, WANG?2 and EX14, parallel factorization
exhibits super-lineal speed-up even for four processors.

Regarding the solve stage, we did not reach speed-up when using more than 4
processors. The reason is the low computational load presented by these matrices
for this step. This can be seen in table 6, where the time expended on the solve
stage never exceeded 0.3 seconds for any of the 17 matrices (the more expensive
is CAVITY16 expending 0.25 seconds on this stage). Additionally, our solve
stage comprises a sparse and a dense part, and the last one can only exploit
unidimensional parallelism. Therefore, redistribution for the dense submatrix,
AD, implies some overhead.

In any case, the parallel solve stage 1s worthwhile as it permits us to solve
matrices which do not fit on an single processor. Moreover, the parallel solve
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Fig. 6. SpLU speed-up and efficiency

Matrix| JPWH991 SHERMANI1 SHERMAN2  EX10
Time | 1.72E-2 2.77E-2 2.90E-2 6.22E-2
Matrix| ORANI678  EX10HS  CAVITY10 WANGI1
Time | 4.43E-2 6.22E-2 1.09E-2 9.91E-2
Matrix| WANG2 UTM3060 GARON1 EX14
Time | 1.03E-1 1.04E-1 1.40E-1 1.79E-1
Matrix| SHERMANS5 LNS3937 LHR04C CAVITY16
Time | 5.37E-2 1.12E-1 1.51E-1 2.54E-1

Table 6. Solve sequential execution time

stage avoids collecting the whole matrix in one processor. As future work we will
try to reduce this communication overhead by using a block cyclic distribution.

5 Related work

The computational numeric solution of large sparse systems is a very active
research area. However, due to its complexity, there are many open problems.
We will try to sumarize recent works, organizing them according to the level of
parallelism.

Regarding task level parallelism, Gallivan, Marsolf and Wijshoff (1996) [19]
carry out a matrix reordering to a bordered block triangular form. In the same
direction, Zlatev et al. (1995) [32] have developed the tool PARASPAR, to solve
the linear system on shared memory multiprocessors, by reordering the system
matrix. This tool allows for rectangular diagonal blocks, exploiting some advan-
tages, but the lack of singularity or bad conditioning for diagonal blocks is not
guaranteed. Therefore, to ensure better stability some techniques were imple-
mented in LORA-P® code, which is in charge of the reordering stage for the
Y12M3 program. This code achieves speed-ups between 3.0 and 4.7 for some



of the biggest Harwell-Boeing matrices on 8 processors of the shared memory

Alliant FX/80 [31].

Apart from reordering, another source of task parallelism is multifrontal or
supernode methods. As these methods were traditionally applied to symmetric
matrices, parallel cholesky multifrontal codes were quickly developed. For shared
memory machines, the works from Johnson and Davis (1992) [23] and Amestoy
and Duff (1993) [3] are relevant. A cholesky data parallel version is presented by
Conroy, Kratzer and Lucas (1994) [8]. But probably, Gupta, Karypis and Kumar
(1995) [21] where the authors who better performance achieved in the sparse
cholesky. To reach these results over a distributed memory platform, special
care of the elimination tree balance and a regular distribution for dense matrices
was necessary. This way, authors exploit loop level parallelism when task level
one starts to be exhausted when approaching the root of the tree.

A significant more difficult problem appears when matrices are not sym-
metric. Here, the supernode tree is the tool to exploit task level parallelism. A
parallel version of the SuperLU is presented by Li et al. [26], achieving on 8 pro-
cessors shared memory machines, and for 21 unsymmetric sparse matrices, the
following average speed-up: 3.59 in the SGI Power Challenge, 4.01 in the DEC
AlphaServer 8400, 3.85 in the Cray C90 and 4.29 in the Cray J90. Better results
can be achieved on distributed memory machines as recently shown by Fu, Jiao
and Yang (1998) [18]. However, they have parallelized the factorize stage only,
which can be executed in parallel thanks to fill-in overestimation carried out on
the analyse stage. As the authors state, the analyse state needs some improve-
ment to avoid the cases in which static symbolic factorization leads to excessive
overestimation.

On the other hand, to exploit loop level parallelism it is highly recommended
to also profit from matrix sparsity, by looking for a set of parallel pivots. For
shared memory machines the work from the following authors is significant:
Alaghband (1995) [1,2], Davis and Yew (1990) [9,10] and Zlatev et al. (1995)
[32]. Alaghband uses an n x n table to represent compatibility between diagonal
elements. The author only presents results for two matrices of n = 144 and
n = 505, both with the same density p a~ 2%, achieving 33% and 53% efficiency
on the 8 processors in the Sequent Symmetry.

Davis’s D2 algorithm performs a parallel search for candidates to be pivot.
Compatible candidates are added to the parallel pivot set by critical sections.
Experiments on the Alliant FX/8 reports an average efficiency of less than 50%
in 8 processors.

Zlatev’s Y12M2 is a parallel pivot version of a previous Y12M routine. For 27
Harwell-Boeing matrices, Y12M2 achieves speed-ups between 2.3 and 5.0 on the
FX /80 with 8 processors. We conclude that actual system solver implementations
for shared memory multiprocessors exceeds 50% efficiency in 8 processors with
great difficulty.

Better results are reached for distributed memory machines as presented by
Stappen, Bisseling and van der Vorst (1993) [29] for a square Transputer mesh,



and by Koster and Bisseling (1994) [24, 25] also for a transputer mesh. In these
codes, they do not present a switch to a dense code stage nor parallel solve stage.

6 Conclusions

This work presents a complete tool, SpLU, to solve large nonsymmetric linear
systems on distributed memory multiprocessors. SpLU code comprises analyse-
factorize and solve stages. Both of them were split into sparse and dense steps
to avoid applying sparse techniques when fill-in turns the problem into a dense
one. The algorithm follows a generic approach exploiting loop-level parallelism
and takes advantage of matrix sparsity due to parallel pivoting selection. We
have compared sequential SpLU with another generic sequential nonsymmetric
sparse solver: the high optimized MA48 routine. Our SpLU code leads in many
cases to fewer numerical errors and fill-ins than M A48 does. On the other hand,
MAA48 is usually slightly faster than SpLU. However, we found the loop-level
parallelization of MA48 costly due to its left-looking approach, and we have not
seen any published parallel version for this routine. Therefore, as SpLU exhibits a
high degree of parallelism, speed-up computed as M A48 sequential time divided
by parallel SpLU execution time is still competitive. Additionally, SpLU may
also be faster than M A48 for some matrices.

As far as we know, there 1s no published work for the whole parallel nonsym-
metric sparse system solver on current distributed memory machines, including
sparse analyse-factorize stage, switch to dense LU factorization stage, and for-
ward and backward substitution.

On the other hand, SpL.U could be improved mainly in two areas. The first is
further reducing communication overheads by using a block cyclic distribution
instead of a cyclic one. The second one is directed at reducing data movements
and to make entries insertion easier using an unordered linked list both by rows
and columns. This two points joined with better care of cache exploiting would
result in higher performances. We also want to present some comparisons with
UMFPACK and SuperLU codes, and test the parallel algorithm with a larger
number of processors, for the final version of this paper.
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