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Abstract� Solving large nonsymmetric sparse linear systems on dis�
tributed memory multiprocessors is an active research area� We present a
loop�level parallelized generic algorithm which comprises analyse�facto�
rize and solve stages� To further exploit matrix sparsity and parallelism�
the analyse step looks for a set of compatible pivots� Sparse techniques
are applied until the reduced submatrix reaches a threshold density� At
this point� a switch to dense routines takes place in both analyse�factorize
and solve stages� The SPMD code follows a sparse cyclic distribution to
map the system matrix onto a P �Q processor mesh� Experimental re�
sults show a good behavior of our sequential algorithm compared with a
standard generic solver� the MA�� routine� Additionally� a parallel ver�
sion on the Cray T�E exhibits high performance in terms of speed�up
and e�ciency�

� Introduction

The kernel of many computer�assisted scienti�c applications is to solve large
sparse linear systems� We �nd examples of these kinds of applications in opti�
mization problems� linear programming� simulation� circuit analysis� �uid dy�
namic computation� and numeric solutions of di�erential equations in general�

Furthermore� this problem presents a good case study and is a representative
computational code for many other irregular problems� More precisely� this prob�
lem represents those in which the computational load grows with the execution
time ��ll�in� and matrix coe�cients change its coordinates due to row	column
permutations �pivoting��

We say that a matrix is sparse if it is advantageous to exploit its null elements
with the development of a sparse version of an algorithm� instead of a dense one�
This way� using sparse techniques is justi�ed when sparsity is big enough� and
when it remains more or less constant during the process� However� if the matrix
su�ers from �ll�in it will be worthwhile to combine sparse and dense approaches

we should choose the point in the code in which it will be advantageous to switch
to a dense code�
�
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Therefore� our unsymmetric sparse system solver algorithm follows sparse
processing techniques until the reduced submatrix reaches a certain threshold
density� At this point� we switch to a parallel dense LU factorization code which
applies partial pivoting and uses BLAS as much as possible� Forward and back�
ward substitution are also parallelized� taking into account that there should
be sparse and dense versions for both stages� The algorithm is mapped onto a
two�dimensional mesh by a sparse cyclic distribution�

Experimental results will be conducted on a Cray T�E with � DEC ����
�Alpha EV��� processors at ��� MHz with a peak performance of �� M�ops
per processor� We have used shmem�put as communication routines on this dis�
tributed memory machine� The unsymmetric sparse matrices used to test our
algorithm are taken from Harwell�Boeing and University of Florida sparse ma�
trices collections� In addition� we have compared our sequential code with a
standard generic sparse solver
 the MA�� routine developed by Du� and Reid
����� We also want to present some comparisons with UMFPACK and SuperLU
codes� and test the parallel algorithm with a bigger number of processors� for
the �nal version of this paper�

The next section presents some background and alternatives to solve sparse
linear systems� justifying the selection of the alternative presented in this work�
Section � gives a summarized description of this complex code� avoiding deep
implementation details for the sake of shortness� Experimental results� validating
the sequential code� comparing with the MA�� routine� and presenting paral�
lel performance� comprise section �� Finally� the related work and conclusions
section close the paper�

� Sparse systems solving methods

Let us present the linear system of n equations as


Ax � b ���

where A is a non�singular unsymmetric sparse matrix of dimensions n� n with
� � c � n nonzero elements �entries�� so that � � n�� This way� c represents
the average number of entries per row �or column�� The density of the matrix is
� � ��n�� and sparsity can be de�ned as � � �� ��

One possible classi�cation for the alternatives we �nd to solve equation �� is
the following
 ������

�����

Iterative

Direct

����
���

Frontal
Multifrontal
Supernode
Generic

Iterative solvers are attractive in many situations due to the lack of dependen�
cies in the sparse matrix�vector multiplication �its kernel�� making the parallel



implementation of the code easy� However� there is no one single iterative method
robust enough to solve all sparse linear systems accurately and e�ciently�

We will focus on those methods based on Gaussian elimination �direct meth�
ods�� and particularly on the LU factorization of the sparse matrix
�A� � LU �
where � and � are permutation matrices� and L and U are lower and upper tri�
angular matrices� respectively� In more detail� if we call � and � the permutations
vectors� the necessary steps to solve the system are


�� Factorize A so that A�i��j � �LU �ij � i� j� � � i� j � n� We obtain the L
and U matrices and corresponding permutation vectors� � and ��

�� Permute b following di � b�i � � � i � n� to obtain the vector d�
�� Solve the system Ly � d to obtain y �forward substitution��
�� Solve the system Uz � y� to obtain z �backward substitution��
�� Permute z following x�j � zj � � � j � n� resulting in the solution vector x�

As we see in the previous classi�cation� from the algorithmic point of view�
there are four approaches to solve LU factorization� Frontal schemes can be re�
garded as an extension of band or variable�band schemes and will perform well
on systems whose bandwidth or pro�le is small� The multifrontal scheme is an
extension of the frontal method� At the beginning� this extension permits e��
ciency for matrices with symmetric or nearly symmetric pattern� More recent
works present multifrontal LU factorization for unsymmetric sparse matrices
such as UMFPACK ����� Another nonsymmetric system solver is based on su�
pernode techniques
 the SuperLU ���� code is a left�looking� blocked algorithm
which includes symmetric structural reduction for fast symbolic factorization�
and supernode�panel updates to achieve better data reuse in cache using BLAS�

Finally� there are the generic approaches �such as MA�� ���� or Y��M ������
with the following main characteristics


� The pivot selection stage aims to preserve sparsity and to guarantee numer�
ical stability�

� Do not impose any restriction on the system matrix�
� The sparse data structure is used on the whole code� even on the innermost
loop�

� The loop structure in the sparse generic codes is similar to the dense coun�
terparts� but these loops traverse sparse data structure instead of dense ones�

The last two issues led us to focus on these generic methods� In general� we can
say that multifrontal and supernode codes convert a sparse problem into a dense
subproblems hierarchy� This way they pro�t from the good behavior of dense
codes �regularity� exploiting the cache� etc�� On the other hand� it seems to us a
more provocative challenge to solve a sparse problem as is� instead of avoiding
it by turning it into a collection of dense subproblems� This way we will be able
to study dynamic data structures� pivoting and �ll�in issues� and solutions to
other problems which can be extrapolated to many other irregular algorithms�
Moreover� as the computational kernel of the generic codes reside in three nested
loops �as in dense LU factorizations�� the problem can be parallelized at the



loop level� That means� that we could face this sparse generic problems from the
data�parallel compilers point of view in which we are interested ��� ��� As far as
we know� the parallel versions for multifrontal or supernode codes only exploit
parallelism at the task level ������ which is more sensitive to load balance and
scalability problems�

��� Loop level parallelism

To exploit loop level parallelism presents some advantages� A loop level paral�
lelized code has the same structure as the sequential code except for these two
issues


� Iteration space for parallel loops is reduced according to the number of pro�
cessors�

� To solve data dependencies some communication stages may be inserted�

This way the parallel code is a generalization of the sequential one� In these
cases� we can try to write this kind of code using some data parallel language
�such as HPF�� ����� which simpli�es the development tool� Moreover� loop level
parallelized codes are less sensitive to load balance and scalability problems than
task level parallelism �in which tasks may have unbalance computational loads
and some processors become idle when there are not enough tasks��

In the right�looking LU factorization we can parallelize the two internal
nested loops� Additionally� the sparsity of matrix A give us a degree of free�
dom to choose the pivots with the aim of achieving more parallelism� This idea
comes from the compatible pivots de�nition presented by Calahan ������ ��

two matrix entries aij and ars are compatible if ais and arj are zero� By choos�
ing a set of m compatible pivots we will be able to apply a parallel m�rank update
of the reduced submatrix instead of m sequential ��rank updates�

This way� the factorization process consists of three steps for each outermost
loop k iteration
 to look for a set of m compatible pivots in the active matrix at
this k iteration� A�k�� carry out a maximum of m row and column permutations
�full pivoting� to put selected pivots on the diagonal� and �nally perform the
m�rank update of the reduced submatrix� as shown in �gure �� For the next k

iteration� the reduced submatrix will be the new active matrix�

��� Phases of the sparse linear system solution

Given the complexity presented on the sparse linear system� it is usual to divide
the problem into four phases


�� Reordering
 Aimed to reduce the computational complexity of the forth�
coming stages� For example� if we reorder the original matrix A in a block
triangular or block diagonal matrix� we can factorize each irreducible block
of the resulting reordered matrix in parallel� We will assume our code will
work with already irreducible block matrices�



submatrix
Reduced

(c)(b)(a)

(k)Active Matrix   A

Fig� �� Steps of the parallel pivots algorithm� 	a
 Selection of compatible pivots� 	b

parallel permutations� 	c
 m�rank update

�� Analyse
 Aimed to determine the permutation matrices � and � which are
going to select which coe�cients of matrix A will be placed on the diago�
nal �i�e�� pivots�� To ful�ll the sparsity preservation constraint we will follow
the Markowitz strategy ����� On the other hand� we will ensure the numer�
ical stability selecting pivots with an absolute value greater than a certain
threshold�

�� Factorize
 The most computationaly expensive stage� in which the factor�
ization �A� � LU takes place�

�� Solve
 Comprises forward and backward substitution�

Due to the full pivoting necessities in our algorithm� the analyse and factorize
stage are joined into a single analyse�factorize stage� This means that� for each
outermost loop iteration k of the analyse�factorization process� we �rst determine
the pivot set �analyse�� followed by the update process �factorize��

Additionally� analyse�factorize and solve stages will be further divided into
sub�stages
 due to the �ll�in which takes place on the reduced submatrix� it will
be worthwhile to switch to a dense code at some k iteration �i�e�� when the
density of the reduced matrix exceeds a threshold input parameter��

This way we will implement a sparse analyse�factorize code followed by a
dense one� with a switch routine between them� to change the sparse data struc�
ture to a regular two�dimensional dense array� Obviously� the solve stage will be
similarly split
 sparse forward and dense forward substitution ended by dense
backward and sparse backward substitutions� We will use BLAS for the dense
subroutines and show in the experimental results that the switch overhead is
negligible in comparison to the time saved when avoiding factorizing a quite
dense submatrix with a sparse code�

� Parallel sparse LU Factorization

In this section we present a parallel algorithm for the sparse generic linear system
solver� called SpLU� The main characteristics of this code are




� The algorithm is right�looking� The code� written in C� is SPMD and is de�
signed for a distributed memory multiprocessor� There is a portable version
thanks to the MPI message passing interface� and a more optimized one for
the Cray T�D or T�E using the SHMEM library�

� Data distribution follows the two dimensional sparse cyclic scheme �scatter��
mapping the system matrix A onto a P �Q processor mesh�

� The data structure used to store local matrices is a semi�ordered two�dimen�
sional doubly linked list� Entries are linked in an ordered way by rows and
by columns in any order�

� We exploit both inherent parallelism in the updating loops and the paral�
lelism we achieve by selecting m compatible pivots� Analyse and factorize
stages are joined into a single analyse�factorize one�

� We use a threshold�based heuristic to ensure numerical stability� and the
Markowitz criterion �min row in min column� to preserve sparsity� The num�
ber of columns in which we search for compatible pivots change according
to matrix density in an adaptive way� Explicit full pivoting reduces the un�
balancing problems ��� ����

� When matrix density reaches certain threshold� we switch to a parallel dense
LU factorization code�

� The solve stage is also a parallel phase�

In the parallel sparse factorization� the sequential outermost loop� k� nests the
three mentioned parallel stages
 look for a set of m compatible pivots� called
PivotSet� parallel rows and columns permutations� and reduced submatrix up�
date�

Apart from the data structure for matrix A� we will need two additional
nonzero count vectors� R and C� of dimension n� to implement the Markowitz

strategy� The value R
�k�
i represents the number of entries in row i of active

matrix at iteration k� whereas the number of entries in active column j for the

same iteration is indicated by C
�k�
j �

Vectors C�k� or R�k� are also used to decide the switch iteration to a dense
factorization code� Active submatrix density� dens� is calculated at each k iter�
ation as dens� �

Pn��
i�k R�k����n � k�� When dens	maxdens� where maxdens is

an input parameter� and n�k is big enough to compensate the data structure
change� the switch to a dense code takes place�

On the other hand� � and � will be the permutation vectors needed for

the forthcoming solve stage� When �
�k�
i �r this means that at iteration k� row

r from the original matrix A���� is now placed at row i in matrix A�k� �and
analogously for column permutation vector �� changing row for column�� As
program is written in C� the space iteration for all indices mentioned in these
paragraphs� i� j and k� are from zero to n� ��

��� Distribution scheme

Matrix A will be distributed cyclically over a P � Q processor mesh� The pro�
cessor will be identi�ed by its coordinates �p� q�� with � � p 
 P and � � q 
 Q�



That is� the matrix entries will be assigned to processors following this equation


Aij ��� PE�i mod P� j mod Q� �i� j� � � i� j 
 n� ���

This sparse cyclic �also scatter or grid� distribution will lead to even distributions
when the probability of a nonzero coe�cient is independent of its coordinates�
This is true for random pattern matrices and for those which do not present
periodicities on entry coordinates�� Additionally� scatter distribution will spread
clusters of entries on di�erent processors�

Permutation vectors� � and � will be partially replicated� That is� we will
store �i on processors with coordinates �i mod P � ��� where � represents any
integer value between zero and Q � �� Similarly� �j will be replicated by rows�
Vectors R and C will be distributed in the same way as � and �� respectively�

We will call �A to the local matrix of dimensions �m � �n� where �m � dn�P e�
and �n � dn�Qe� Therefore� on processor �p� q�� the relationship between A and
�A will be given by the following equation


�A�� � A�P�p��Q�q ���� �� � � ��P � p� �Q � q 
 n� ���

On the other hand� we should select a proper data structure to store system
matrix entries� We will call the combination of these two aspects �data structure
� data distribution� the distribution scheme� The distribution scheme comprises
all the information we need to localize any matrix entry on the local memories of
the multiprocessor system� Maintaining the same data structure of the sequential
code in the parallel one� leads to the parallel code being a generalization of the
sequential one�

To chose the data structure we should take into account that in our algo�
rithm we implement a full�pivoting stage� This reduces the sets of possible data
structures to those with permit access by rows and columns� We have selected
a two dimensional doubly linked list �LLRCS�� which links entries of the same
row in an orderly way� and entries of the same column in any order� We will
also use two pointer vectors to point to the �rst entry on each row� rows� and
column� cols� Each entry on the list stores the coe�cient value� local indices
and pointers to the previous and next entries in the same row and column� The
C data structure declaration follows


struct matrix f
struct entry �rows� �m�� �cols��n��

g�
struct entry f

int Row�Col�
double V al�
struct entry �previ� �prevj� �nexti� �nextj�

g�

� Only periodicities of non prime period with the number of processors can lead to
unbalanced distributions�



Due to the doubly linked structure� we simplify the delete operation of entries�
needed in explicit permutations� However� the wastage of memory due to storage
of pointers is evident� We show in �gure � an example of this distribution scheme
for a sparse matrix with n � � and � � �� mapped onto a �� � processor mesh�

��� Right�looking parallel algorithm

A more detailed description of the algorithm follows


�� � � � � identity�
�� Initialize R and C� Compute dens
	� k � 
�
�� while � �k� n �� �dens�maxdens

f
�� Search for parallel pivots� PivotSet  	ir� jr
 � � � r � m�
�� Parallel row permutations� �ir and Rir � � � r �m�
�� Parallel column permutations� �jr and Cjr � � � r �m�

�� Update A�k��
�� Update nonzero count vectors R and C�
�
� k � k � m�

g
��� Dense submatrix factorization�
��� Solve �forward and backward substitution

In this code� we implicitly assume that each processor� �p� q�� does the compu�
tations over its local data� At the end of the in�place algorithm� matrix A�n���

stores coe�cients of matrix L and U � vectors ��n��� and ��n��� contain its �nal
values� and vector x will be the solution to equation Ax � b�

Parallel pivot search� It is well known that for a selected pivot A�k�
ij � the

maximum number of new entries that can be created may be M
�k�
ij � �R�k�

i �

���C
�k�
j ���� where M

�k�
ij is the Markowitz count at iteration k for the mentioned

pivot�
Therefore� to preserve sparsity� selected pivots would have a minimumMar�

kowitz count and a maximum absolute value to ensure stability� On the other
hand this search is prohibitive� as one needs to visit the whole active matrix� To
keep the search for compatible pivots e�ective and simple� we will only search in

the ncol columns with the least C�k�
j in each column of the processor mesh� In

these columns we will select candidates to be pivots to those with minimumR
�k�
i

�min row in min column technique� and complying wiht the following equation
to ensure numerical stability


jA
�k�
ij j 	 u �max

l
jA

�k�
lj j ���

Input parameter u
 � 
 u � �� will prioritize stability when u � �� or sparsity
when u � ��

From the candidate sets of pivots� we will mark incompatible ones� and pick
up compatibles to build PivotSet with m parallel pivots� To control sparsity� an
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additional input parameter a will be used to reject pivots with an unacceptable
Markowitz count� In particular� candidates withMij 	 a �Mi��j� will be rejected�
where Mi��j� is the minimumMarkowitz count of the candidates�

Another issue is related with the �ll�in that takes place during factorization�
When active matrix density increases� looking for parallel pivots tends to be
unproductive� For this reason� initially� ncol contains the number of columns
per processor in which the search for candidates is performed� but this ncol

parameter will change dynamically during factorization� automatically adapting
to the density�

Parallel permutations� This stage is in charge of moving selected compatible
pivots to the diagonal� building the m�m diagonal block� as shown in �gure �
�b�� Permutation can be done explicitly �i�e�� moving row and column entries
������ ��� or implicitly �using permutation vectors � and � to indirectly access
the matrix ���� ����� In parallel implementations� it has been observed ������
that explicit pivoting leads to better load balance� Performance increases due
to this fact� and compensates communication overheads due to row and column
movement�

Parallel update� The reduced submatrix update process comprises two dif�
ferent steps
 �rst� we divide� in parallel� subcolumns under the diagonal block
following this equation


A
�k�
ij � A

�k�
ij �A

�k�
jj �i� j 
 �k �m � i 
 n� 
 �k � j 
 k �m� 
 �A

�k�
ij �� �� ���

In a second step� we properly update the reduced submatrix with


A
�k�
ij � A

�k�
ij � A

�k�
il A

�k�
lj � i� j� l 


��
�
�k �m � i� j 
 n�
�k � l 
 k �m�

�A
�k�
il �� �� 
 �A

�k�
lj �� ��

��

To carry out equation � in parallel� a previous communication stage �broadcast
by mesh columns� is necessary to make pivots visible to processors who are going
to divide its local columns� In the same broadcast we will pack the block of rows
needed in the forthcoming update ��gure � �a���

In a similar way� to complete equation � the broadcast �by mesh rows� of a
block of previously divided columns is carried out ��gure � �b���

Parallel switch and dense factorization� When we reach the threshold
submatrix density �maxdens� and this submatrix is big enough� we proceed to
switch to a dense factorization code� Clearly� we initially need to change the
data structure for the �nal active submatrix A�k�� from the linked list to a
bidimensional regular array� AD� with dimensions �nd� nd� where nd � n� k�
This operation is fully parallel �without communications� and� when �nished�
the AD matrix remains automatically distributed in a cyclic way�
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Subsequently� we are ready to call to a parallel dense factorization routine�
The one we have designed provides for row partial pivoting to ensure numerical
stability and uses BLAS�� as much as possible�

Parallel solve stage� Even when the stages which solve LUx � b is two or
three orders of magnitude faster than the factorization stages� it is sometimes
worthwhile to parallelize it� For example� optimization problems like simplex or
iterative solvers such as ILU preconditioned Conjugate Gradient� needs to solve
many forward and	or backward substitutions�

As the analyse�factorize stage switches at a certain iteration to a dense code�
the solve stage switches at the same one� However� for the sake of shortness
we will only focus on sparse forward substitution� as the dense solve stage is
su�ciently well known and sparse backward substitution is similar to the forward
one�

The forward substitution algorithm� Ly � b� can be outlined by the following
equation


yi �
�

lii

�
bi �

i��X
j��

lijyj

�
���

As we can see� there is a �ow dependence for index i� as yi may only be computed
when coe�cients y�� � � � � yi�� are known� if lij �� �� � � j 
 i� However� if the
L matrix is sparse� many of the lij coe�cients are zero� and many unknowns
may be computed in parallel� In fact� coe�cients yi� � � � � yi�m are independents
if pivots Ai�i� � � � � Ai�m�i�m are compatible and belong to the same diagonal



block� as shown in �gure �� In terms of loop level parallel programming� we can
carry out the execution of loops with indices i and j in parallel� while maintaining
the bidimensional L matrix distribution�
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Fig� �� Data �ow in the forward substitution

� Experimental results

This section aims to analyse the sequential and parallel behavior of our SpLU
algorithm�when changing the input matrix characteristics and some of the input
parameters� We have selected some heterogeneous unsymmetric sparse matrices
from Harwell�Boeing ��� and the University of Florida ���� matrix collection�
presented in table �� The algorithm has been implemented in C� As a message�
passing interface� SHMEM routines have been used as they are supported by the
CRAYT�E supercomputer� The sequential version of the program is obtained by
simplifying the parallel code� removing all redundant or never executed sentences
when P � � and Q � ��

��� Fill�in and stability

Two input parameters can be tuned to control stability and �ll�in
 u and a�
A study of u parameter incidence is presented in table �� We can see the

variation of the average size of diagonal blocks m� the number of sparse LU
iterations� �ll�in and factorization errors� for di�erent u values� For the sake of
brevity� we present these results for the LNS���� matrix� Other matrices show
the same behavior� but the LNS���� is the worst conditioned and the u e�ect
can be better appreciated� In the experiment we �xed a� � and ncol� ��

In table � we can see that the smaller u is� the bigger is the average size
of PivotSet� allowing us to exploit more parallelism� The same e�ect can be
appreciated in the next row� due to increasing m� so decreasing the number of



Matrix Origin n � Density ���

STEAM� Oil recovery ��� ����� �����

JPWH��� Circuit physics modeling ��� ���� �����
SHERMAN� Oil reservoir modeling ���� ���� �����
SHERMAN� Oil reservoir modeling ���� ����� �����
EX�� �D isothermal seepage �ow ���� ����� �����

ORANI��� Economic modeling ���� ����� �����
EX��HS �D isothermal seepage �ow ���� ����� �����
CAVITY�� Driven cavity problem ���� ����� �����

WANG� Discretized electron continuity ���� ����� �����
WANG� Discretized electron continuity ���� ����� �����
UTM���� Uedge test matrix ���� ����� �����

GARON� �D FEM� Navier�Stokes� CFD ���� ����� �����
EX�� �D isothermal seepage �ow ���� ����� �����
SHERMAN� Oil reservoir modeling ���� ����� �����

LNS���� Compressible �uid �ow ���� ����� �����
LHR��C Light hydrocarbon recovery ���� ����� �����
CAVITY�� Driven cavity problem ���� ������ �����

Table �� Test matrices

Values for u ��� ��� ��� ���� ���� �����

m ���� ���� ���� ���� ���� ����
Sparse iterations ��� ��� ��� ��� ��� ���
Fill�in ������ ������ ������ ������ ������ ������
Error ����E�� ����E�� ����E�� ����E�� ����E�� ����E��

Table �� The in�uence of the u parameter on LNS����

outermost loop iteration� thus reducing both sequential and parallel execution
time� Additionally� �ll�in is reduced when u diminished� as there are more can�
didates to choose from with a smaller Markowitz count� On the other hand� the
factorization error increases when reducing u� which leads to the necessity of
choosing a trade�o� value� Furthermore� we have observed that the more density
is achieved on factors L and U � the bigger is the factorization error� as the num�
ber of �oating point operations increases� For this reason� for u� ��� we get the
minimumerror� These experiments corroborate that the trade�o� u� ��� �������
leads to good results in many situations� In any case� the best selection of u is
problem dependent� so we may need to test some u values to �nd the best one�

The algorithm behavior as a function of the a input parameter is shown in
table � for the same matrix LNS����� with u� ��� and ncol� ��

The greater a is� the bigger will be the average size of the compatible pivots
set� and the less the number of sparse iterations� At the same time� if we do not
limit the Markowitz count� we can select pivots which will bring about more �ll�



Values for a �� � � � � �

m ���� ���� ���� ���� ���� ����
Sparse Iterations ��� ��� ��� ��� ��� ����
Fill�in ������ ������ ������ ������ ������ ������

Table �� The in�uence of the a parameter on LNS����

in� To keep a high m without provoking an excessive �ll�in� the trade�o� value
for a will be around � �also selected by other authors ��������

As ncol value is dynamically adjusted during program execution� the initial
value is not specially signi�cant� In any case� we found an appropriate initial
value ncol���

Searching for a parallel pivots set is worthwhile even in the sequential code�
as we can see in �gure � �a�� where we study the execution time versus the
value of maxncol� In this experiment we have �xed ncol�maxncol� cancelling
the adaptive function to update ncol� For the more sparse matrix in our set
�SHERMAN�� and the second most dense one �SHERMAN��� we present in
this �gure the execution time normalized by the time when maxncol���
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Fig� �� Fixed ncol 	a
 and maxdens 	b
 in�uence on execution time

When factorizing sparse matrices� we see that it is interesting to search for
big sets of compatible pivots� Regarding SHERMAN�� the sequential time when
�xing ncol�� is over ��� less than the one we get when ncol��� The variable
m reaches the value ��� with ncol��� although execution time is worse due to
wastage of time looking for compatible pivots� However� when factorizing more
dense matrices� such as SHERMAN�� setting ncol to a large value is unproduc�
tive� For example� when ncol���� we search for a large set of candidates which
later turned out to be incompatible due to high matrix density�



Finally� we have also studied execution time dependence with the threshold
maxdens which decides the switch to a dense code� In �gure � �b� we show
the relation between maxdens and execution time for some matrices� Execution
times are normalized by the worst time �when there is no switch to a dense
factorization code� identi�ed in the �gure by maxdens������ We see that the
switch leads to a signi�cant execution time saving� Minimum execution times
are obtained when maxdens�����

��� Comparison with the MA�� routine

Before studying the parallel algorithm performance� it is important to check that
the sequential version is good enough� The generic sparse system solver more
widely used is the MA�� routine ����� The good performance of this routine is
mainly due to its left�looking organization which leads to low data tra�c with
memory and a subsequent good exploitation of the cache� However� this left�
looking organization leads to low e�ciencies in a loop level parallelized version
of the MA��� On the other hand� SpLU exhibits more loop level parallelism due
to the right�looking and parallel pivots organization� but should be comparable to
MA�� performances and execution time if we want to get a competitive generic
code�

In table � we present a comparison for the more signi�cant characteristics of
both algorithms
 execution time� factorization error and �ll�in� Common param�
eters are set equally
 u���� and maxdens�����

We can see how the execution time ratio �MA�� time divided by SpLU time�
is greater than one� for �ve matrices �ratios in boldface�� In these cases SpLU is
faster than MA��� reaching a ��� factor for the EX��HS matrix� However� for
the remaining �� matrices MA�� is faster than SpLU� although the ratio do not
decrease below ���� except for WANG�� WANG� and LHR��C matrices� For the
latter� LHR��C� factorization time in SpLU is clearly the worst� but this is in
exchange for a numerical error around �� times better�

For �� of the �� matrices the factorization error in SpLU is better than in
the MA�� routine� For the remaining � matrices� there is never more than an
order of magnitude of di�erence� With regard to �ll�in� L and U matrices are
sparser on � occasions if they are computed by SpLU code�

In spite of the high optimization of the MA�� code� we believe that it can
be improved by the SpLU in some cases due to the analyse stage� Even when
the MA�� analyse stage is also based on Markowitz and threshold strategies� the
fact that this analyse stage takes place before factorizing has its own drawbacks

permutation vectors are selected in advance� but during the factorize stage� the
numerical partial pivoting is also allowed and this may undo the analyse decisions
to some extent�

SpLU shows a joined analyse�factorize stage where for each iteration a proper
set of compatible pivots are selected over the candidates in the active matrix�
In many cases this enables a better pivot selection during factorization� yielding
better numerical precision� In exchange� the analyse fragment of code is more



Time Error Fill�in

Matrix SpLU�MA�	 ration SpLU�MA�	 SpLU�MA�	

STEAM� �������� 	����
 ��
E�������E��� �
����������

JPWH��� �������� 	����
 ��	E�������E��� 	
	���������

SHERMAN� ������� 	����
 ���E�������E��� �����������

SHERMAN� ��������� ������ �
E�����E�� ������������

EX�� ���������� ������ ���E�����E�� �	���	�������

ORANI��� ��������� 	����
 ���E�������E��� ���	�������

EX��HS ����������� ����� ���E������E�� �������������

CAVITY�� ����������� 	����
 ��E�
����E�� ���������������

WANG� ����������� 	����
 ���E�������E��� ��������������

WANG� ����������� 	����
 ���E�������E��� ��������������

UTM���� ����������� 	����
 ��E�	����E�� ��	
��������

GARON� ����������� 	����
 ���E�	����E�� ���������������

EX�� ������������� ����� ��
E������E�� ��
�	����������

SHERMAN� ���������� ����� ���E�������E��� ���	�������

LNS���� ��������� 	����
 ���E������E�� ���������������

LHR��C ������������ 	����
 �	
E������E�� ��������������

CAVITY�� ������������� 	����
 ���E������E�� ���������������

Table �� SpLU and MA�� comparison

expensive than the corresponding one in the MA��� due to it searching for a
single pivot instead of many which are mutually compatible�

��� Parallel performance

In this section we will compare the parallel algorithm execution time over a
P �Q processor mesh with the sequential version� executed over a single Alpha
processor�

To make times comparable for both versions� input parameters will be equally
�xed� As we saw in subsection ��� it seems appropriate to set u���� and a���
As for the initial local ncol� it will be set to ��Q� to make the initial maximum
number of compatible pivots independent of the mesh size�

Parallel version exhibits the same �ll�in and factorization error as sequential
version� as u� a and maxdens� do not a�ect the parallel version in a di�erent way
to the sequential one�

Table � presents the speed�up we get when factorizing the �� biggest matrices
in our set� The last three columns in this table show dimension� n� initial density�
��� and the �nal one� �n� Figure  shows speed�up and e�ciency when factorizing
the � computationally more expensive matrices for mesh sizes�



Speed�up Density
Matriz � � � �� n �� �n

SHERMAN� ���� ���� ���� ���� ���� ����� ������
EX�� ���� ���� ���� ���� ���� ����� �����
ORANI��� ���� ���� ���� ���� ���� ����� �����

EX��HS ���� ���� ���� ���� ���� ����� �����
CAVITY�� ���� ���� ���� ���� ���� ����� ������
WANG� ���� ���� ���� ����� ���� ����� ������
WANG� ���� ���� ���� ����� ���� ����� ������

UTM���� ���� ���� ���� ����� ���� ����� ������
GARON� ���� ���� ���� ����� ���� ����� ������
EX�� ���� ���� ���� ����� ���� ����� ������

SHERMAN� ���� ���� ���� ���� ���� ����� �����
LNS���� ���� ���� ���� ����� ���� ����� �����
LHR��C ���� ���� ���� ����� ���� ����� ������

CAVITY�� ���� ���� ���� ����� ���� ����� ������

Table �� Speed�up for di�erent mesh sizes

We see that speed�up monotonically increases with the number of proces�
sors� When changing from � to � processors� EX�� and EX��HS exibit a less
notable increment of speed�up due to the low computational load presented by
these matrices� In these cases� communications dominate local computations and
messages comprise a small number of data� so latency prevails over communica�
tion bandwidth� We should take into account the high ratio between the power
of Alpha ��������Mhz and the ���Mbytes	s peak bandwidth and ��� to � �s
latency for the shmem�put communication routine�

It is noteworthy that� contrary to dense LU factorization� the computational
load depends not only on the matrix dimension but also on the initial or �even
more� �nal density� This way� EX��� EX��HS and SHERMAN� are the only
matrices with �n 
�� and with lowest speed�up on � processors�

Therefore� better speed�ups on � processors are reached for matrices with
high n and high �n� The best speed�up is presented for CAVITY�� For some of
the bigger matrices� such as WANG�� WANG� and EX��� parallel factorization
exhibits super�lineal speed�up even for four processors�

Regarding the solve stage� we did not reach speed�up when using more than �
processors� The reason is the low computational load presented by these matrices
for this step� This can be seen in table � where the time expended on the solve
stage never exceeded ��� seconds for any of the �� matrices �the more expensive
is CAVITY� expending ���� seconds on this stage�� Additionally� our solve
stage comprises a sparse and a dense part� and the last one can only exploit
unidimensional parallelism� Therefore� redistribution for the dense submatrix�
AD� implies some overhead�

In any case� the parallel solve stage is worthwhile as it permits us to solve
matrices which do not �t on an single processor� Moreover� the parallel solve
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Fig� � SpLU speed�up and e�ciency

Matrix JPWH��� SHERMAN� SHERMAN� EX��

Time ����E�� ����E�� ����E�� ����E��

Matrix ORANI��� EX��HS CAVITY�� WANG�

Time ����E�� ����E�� ����E�� ����E��

Matrix WANG� UTM���� GARON� EX��
Time ����E�� ����E�� ����E�� ����E��

Matrix SHERMAN� LNS���� LHR��C CAVITY��
Time ����E�� ����E�� ����E�� ����E��

Table � Solve sequential execution time

stage avoids collecting the whole matrix in one processor� As future work we will
try to reduce this communication overhead by using a block cyclic distribution�

� Related work

The computational numeric solution of large sparse systems is a very active
research area� However� due to its complexity� there are many open problems�
We will try to sumarize recent works� organizing them according to the level of
parallelism�

Regarding task level parallelism� Gallivan� Marsolf and Wijsho� ����� ����
carry out a matrix reordering to a bordered block triangular form� In the same
direction� Zlatev et al� ������ ���� have developed the tool PARASPAR� to solve
the linear system on shared memory multiprocessors� by reordering the system
matrix� This tool allows for rectangular diagonal blocks� exploiting some advan�
tages� but the lack of singularity or bad conditioning for diagonal blocks is not
guaranteed� Therefore� to ensure better stability some techniques were imple�
mented in LORA�P� code� which is in charge of the reordering stage for the
Y��M� program� This code achieves speed�ups between ��� and ��� for some



of the biggest Harwell�Boeing matrices on � processors of the shared memory
Alliant FX	�� �����

Apart from reordering� another source of task parallelism is multifrontal or
supernode methods� As these methods were traditionally applied to symmetric
matrices� parallel cholesky multifrontal codes were quickly developed� For shared
memory machines� the works from Johnson and Davis ������ ���� and Amestoy
and Du� ������ ��� are relevant� A cholesky data parallel version is presented by
Conroy� Kratzer and Lucas ������ ���� But probably� Gupta� Karypis and Kumar
������ ���� where the authors who better performance achieved in the sparse
cholesky� To reach these results over a distributed memory platform� special
care of the elimination tree balance and a regular distribution for dense matrices
was necessary� This way� authors exploit loop level parallelism when task level
one starts to be exhausted when approaching the root of the tree�

A signi�cant more di�cult problem appears when matrices are not sym�
metric� Here� the supernode tree is the tool to exploit task level parallelism� A
parallel version of the SuperLU is presented by Li et al� ���� achieving on � pro�
cessors shared memory machines� and for �� unsymmetric sparse matrices� the
following average speed�up
 ���� in the SGI Power Challenge� ���� in the DEC
AlphaServer ����� ���� in the Cray C�� and ���� in the Cray J��� Better results
can be achieved on distributed memory machines as recently shown by Fu� Jiao
and Yang ������ ����� However� they have parallelized the factorize stage only�
which can be executed in parallel thanks to �ll�in overestimation carried out on
the analyse stage� As the authors state� the analyse state needs some improve�
ment to avoid the cases in which static symbolic factorization leads to excessive
overestimation�

On the other hand� to exploit loop level parallelism it is highly recommended
to also pro�t from matrix sparsity� by looking for a set of parallel pivots� For
shared memory machines the work from the following authors is signi�cant

Alaghband ������ ������ Davis and Yew ������ ��� ��� and Zlatev et al� ������
����� Alaghband uses an n�n table to represent compatibility between diagonal
elements� The author only presents results for two matrices of n � ��� and
n � ���� both with the same density � � ��� achieving ��� and ��� e�ciency
on the � processors in the Sequent Symmetry�

Davis�s D� algorithm performs a parallel search for candidates to be pivot�
Compatible candidates are added to the parallel pivot set by critical sections�
Experiments on the Alliant FX	� reports an average e�ciency of less than ���
in � processors�

Zlatev�s Y��M� is a parallel pivot version of a previous Y��M routine� For ��
Harwell�Boeing matrices� Y��M� achieves speed�ups between ��� and ��� on the
FX	�� with � processors� We conclude that actual system solver implementations
for shared memory multiprocessors exceeds ��� e�ciency in � processors with
great di�culty�

Better results are reached for distributed memory machines as presented by
Stappen� Bisseling and van der Vorst ������ ���� for a square Transputer mesh�



and by Koster and Bisseling ������ ������� also for a transputer mesh� In these
codes� they do not present a switch to a dense code stage nor parallel solve stage�

� Conclusions

This work presents a complete tool� SpLU� to solve large nonsymmetric linear
systems on distributed memory multiprocessors� SpLU code comprises analyse�
factorize and solve stages� Both of them were split into sparse and dense steps
to avoid applying sparse techniques when �ll�in turns the problem into a dense
one� The algorithm follows a generic approach exploiting loop�level parallelism
and takes advantage of matrix sparsity due to parallel pivoting selection� We
have compared sequential SpLU with another generic sequential nonsymmetric
sparse solver
 the high optimized MA�� routine� Our SpLU code leads in many
cases to fewer numerical errors and �ll�ins than MA�� does� On the other hand�
MA�� is usually slightly faster than SpLU� However� we found the loop�level
parallelization of MA�� costly due to its left�looking approach� and we have not
seen any published parallel version for this routine� Therefore� as SpLU exhibits a
high degree of parallelism� speed�up computed as MA�� sequential time divided
by parallel SpLU execution time is still competitive� Additionally� SpLU may
also be faster than MA�� for some matrices�

As far as we know� there is no published work for the whole parallel nonsym�
metric sparse system solver on current distributed memory machines� including
sparse analyse�factorize stage� switch to dense LU factorization stage� and for�
ward and backward substitution�

On the other hand� SpLU could be improved mainly in two areas� The �rst is
further reducing communication overheads by using a block cyclic distribution
instead of a cyclic one� The second one is directed at reducing data movements
and to make entries insertion easier using an unordered linked list both by rows
and columns� This two points joined with better care of cache exploiting would
result in higher performances� We also want to present some comparisons with
UMFPACK and SuperLU codes� and test the parallel algorithm with a larger
number of processors� for the �nal version of this paper�
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