
Data-Parallel Support for Numerical Irregular Problems

E.L. Zapata
O. Plata
R. Asenjo
G.P. Trabado

December 1999
Technical Report No: UMA-DAC-99/03

Published in:
J. Parallel Computing
vol. 25, no. 13-14, pp. 1971-1994, December 1999

University of Malaga
Department of Computer Architecture
C. Tecnologico • PO Box 4114 • E-29080 Malaga • Spain

Data�Parallel Support for Numerical Irregular

Problems �

E�L� Zapata� O� Plata� R� Asenjo and G�P� Trabado

Department of Computer Architecture� University of M�alaga
P�O� Box ����� E����	� M�alaga� Spain

E�Mail
 fezapata�oscar�asenjo�guilleg�ac�uma�es

Abstract

A large class of intensive numerical applications show an irregular structure� ex�
hibiting an unpredictable runtime behavior� Two kinds of irregularity can be dis�
tinguished in these applications� First� irregular control structures� derived from
the use of conditional statements on data only known at runtime� Second� irregular
data structures� derived from computations involving sparse matrices� grids� trees�
graphs� etc� Many of these applications exhibit a large amount of parallelism� but
the above features usually make that exploiting such parallelism become a very dif�
�cult task� This paper discusses the e�ective parallelization of numerical irregular
codes� focusing on the de�nition and use of data�parallel extensions to express the
parallelism that they exhibit� We show that the combination of data distributions
with storage structures allows to obtain e�cient parallel codes� Codes dealing with
sparse matrices� �nite element methods and molecular dynamics simulations are
taken as working examples�

� Introduction

Scienti�c and engineering applications are computational expensive� and so
important e�orts have been devoted to �nd e�cient implementations on mul�
tiprocessors� This general situation� however� deserves to be analyzed in more
detail� There is a class of numerical applications that exhibit a regular struc�
ture� Computationally� these problems are typically characterized by the exis�
tence of a simple relationship between the indices of two data dependent array
accesses �often a linear function analyzable by the compiler��

� This work was supported by the Ministry of Education and Science �CICYT�
of Spain under project TIC�	�

���C� and the Human Capital and Mobility pro�
gramme of the European Union under project ERB��P
��
		

Preprint submitted to Elsevier Preprint �� January ����

Regular applications are usually easy to parallelize� making e�cient use of
the processor cycles and the memory hierarchy of current multiprocessor ar�
chitectures� These codes make easy to devise a simple mechanism to access
remote data� as regular data dependences can often be satis�ed� with little
or no communication� by distributing data structures across memories using
simple mapping strategies �block� cyclic or mixed block�cyclic��

Many important numerical applications� however� show an irregular struc�
ture� These problems arise in sparse matrix computations� computational �uid
dynamics� image processing� molecular dynamics simulations� galaxy simula�
tions� climate modeling� optimization problems� etc� 	
���� They exhibit an
irregular and unpredictable runtime behavior� that does not �t directly the ar�
chitectural features of contemporary multiprocessors� This makes that writing
an e�cient parallel program becomes a very di�cult task�

We can distinguish two kinds of irregularity in these applications� First� irreg�
ular control structures may appear in the code� that is� conditional statements
on data only known at runtime� Second� irregular data structures may also
appear in the code� which include sparse matrices� grids� trees� graphs� etc�
Usually these data structures are organized as arrays in the code� but in such
a way that arise pairs of dependent array elements whose indices appear to
be related by a complex function or by an array lookup �indirection access��
Both kinds of irregularities cause irregular communication patterns and work�
load balancing problems� Issues like data layout� data�control dependences�
locality� workload balancing� communication optimization� and others� become
hard problems to be assessed�

Private memory �message�passing� architectures have been the most used ma�
chines to solve large numerical problems� Typically these machines are pro�
grammed using a standard sequential language� like Fortran or C� augmented
with constructs for message�passing� like PVM or MPI� In this programming
model� the programmer must explicitly deal with complex aspects� like data
distribution� work partitioning� task communications� workload balance� and
others� This fact leads to high developing costs and slow software production�

To facilitate the productivity of parallel numerical software� two more op�
tions are being available in recent years 	���
�� On one hand� a data�parallel
programming model has been standardized� the High Performance Fortran
�HPF� 	������������ This paradigm is based on a single thread of control and
a globally shared address space� On the other hand� scalable distributed shared
memory machines 	��� are starting to be used for solving numerical applica�
tions� For these systems shared memory is the native programming model�
Recently there has been an important e�ort to develop a new standard for
portable� high level� scalable and incremental shared memory parallelization�
called OpenMP 	����

�

In any of the above parallel programming models a good distribution of
data across the memories is a key point for obtaining a scalable parallel
program 	���� It would be desirable to have a compiler capable of selecting
the appropriate data distribution with no intervention from the programmer�
However� this is a very tough task for numerical irregular problems� Currently
the problem is open and unsolved� except for some simple classes of irregular
codes 	�������� The compilation task can be simpli�ed if the programmer is
allowed to be involved through the use of compiler directives� These directives
may help the compiler in identifying the class of irregular application� that is
the role of the main data structures in the code� as well as express directly
data distributions and alignments� Data�parallel and scalable shared�memory
programming models permit this alternative�

This paper reviews our research experience in parallelizing numerical irregular
problems in scalable parallel systems� mainly message�passing machines� in
the context of a data�parallel programming model� It shows a sample of the
methods we have developed in the case of three example codes� that cover a
representative set of irregular applications� In all cases we explain how to use
and improve the data�parallel language HPF to inform the compiler about
key aspects of the program and hence obtain an e�cient and scalable parallel
code�

The rest of the paper is organized as follows� Section � discusses the di�culties
in the parallelization of numerical irregular programs� and how we can obtain
e�cient parallel codes if the compiler is aware of some problem properties�
Next two sections explain the method we follow to obtain such parallel codes
for various code examples� one in the sparse matrix area �Section �� and two
dealing with unstructured domains �Section ��� In Section
 some related work
is described� and �nally� we draw some conclusions�

� Revealing Problem Structure

Numerical applications that operate on regular data structures can often be
e�ciently implemented by using data�parallel language constructs� The regu�
lar nature of the problem to be solved can be easily comprised at the language
and compiler levels� The same cannot be said about irregular numerical ap�
plications� that use irregular data structures� It is usual that in the process of
expressing an irregular application using language constructs some problem
properties are lost� For instance� codes may not exhibit key properties such
as spatial or temporal localities associated to the nature of the problem� It is
crucial� however� to exploit this kind of properties in order to obtain e�cient
parallel codes�

�

DO i � �� N
DO j � Row�i�� Row�i�����

Y�i� � Y�i� � Data�j��X�Col�j��
END DO

END DO

DO ts � TimeStep� TimeStep�THop��
DO k � �� NeighListLength� �

i � NeighbourList�k���
j � NeighbourList�k�
r � distance�X�i��X�j��
IF �r �LT� cuto�� THEN

� � force�r�
F�i� � F�i� � �
F�j� � F�j� � �

END IF

END DO

DO i � ��N
V�i� � K� � V�i� � K� � F�i�
X�i� � X�i� � TS � V�i�

END DO

END DO

�a� �b�

Figure �� Codes for sparse matrix�vector multiplication �a� and molecular dynamics
simulation �b�

There is� therefore� usually a mismatch between the problem�level representa�
tion of the application �data and operations needed to process the data� as well
as the problem properties of such data and operations� and its language�level
representation �code using some conventional data�parallel language�� In order
to obtain an e�cient parallel program the compiler needs to know the role of
some key data structures in the code as well as some general properties that
the data stored on such structures ful�ll� Let us explain this using two small
code examples� as shown in �gure �� In �gure � �a�� a sparse matrix�vector
multiplication code �SpMxV� is sketched� The source and resulting vectors are
dense� and are represented by arrays X and Y� The matrix� however� is sparse
and it is represented using a compressed row storage format �CRS� 	���� This
format uses three arrays� Data� Col and Row to represent the matrix� Data
stores the nonzero entries of the matrix� as they were traversed in a row�wise
fashion� Col stores the column indices of the entries in Data� and Row stores
the locations in Data that start a row �by convenience� Row�n��� stores the
number of nonzero entries of the matrix plus one� where n is the number of
rows of the matrix��

The SpMxV code shown in �gure � �a� is e�cient� as only nonzero matrix en�
tries are considered for the multiplication� avoiding a large amount �depending
on the matrix �ll�in� of null operations� However� the nature of the problem
has been lost� A simple analysis of the code only sees a two�level nested loop
that operates on �ve dense one�dimensional arrays� A naive parallelization of
the nested loop probably produces an ine�cient parallel code� as the length
of the inner loop cannot be predicted at compile�time and the array X is ac�
cessed through an indirection� Simple block�cyclic distributions of the arrays
may imply an unbalanced workload distribution and a high communication
overhead�

A much better parallel code can be obtained if the knowledge that the three

�

arrays Data� Col and Row actually represents a sparse matrix �problem prop�
erty� is considered� If the compiler knows that the arrays Row and Col only
contains index information about the location of the values stored in Data
on a matrix space� then a uniform distribution of Data is enough to assure
a well�balanced code workload distribution� In addition� a careful assignment
of the particular elements in Data to the processors allows us to optimize the
communication requirements� The de�nition of this mapping may also be fa�
cilitated if the sparse matrix nature of the problem is known� When using a
data�parallel language� such data distribution and assignment must be done
at the language level� Hence the sparse matrix problem property should also
be at that level�

A di�erent situation is represented in �gure � �b�� The code shown is a sec�
tion of a simple molecular dynamics �MD� simulation 	
�� A neighbour list
�NeighbourList� was previously built by storing pairs of interacting particles�
The inner loop k sweeps over those pairs and� if the separation between the
interacting particles is less than some cuto� distance� pairwise force contri�
butions on them are computed� Afterwards� velocities and positions of all the
particles in the system are updated� These computations are repeated during
a small number of consecutive timesteps �outermost loop ts��

The force calculation stage is usually the most time�consuming part of the
simulation� Through the use of a neighbour list� only non�null force contribu�
tions are computed� speeding up this stage� However� this fact increases the
algorithmic complexity of the code� as indirections appear at both sides �LHS
and RHS� of the statements computing the forces� A naive distribution of the
particles across the processors �block distribution of the arrays� for instance�
probably produces a parallel code with high communication requirements at
the most computational part of the MD simulation�

However� if only short�range interactions are considered in the simulation
�problem property�� then the neighbour list exhibits a high degree of spatial
locality� This knowledge does not appear in the code� but only in the input
data� Exhibiting this knowledge at the language�compiler level� the commu�
nication overhead can be minimized� For instance� a spatial decomposition of
the domain can be accomplished� Communication requirements are very low�
as only particles near the frontier of the sub�domains interact with non�local
particles �belonging to other sub�domains��

There are many parallel implementations of the above two codes� and of many
other numerical irregular applications� Most of these implementations� in the
case of large applications at least� has been done on massively parallel com�
puters� resorting to message�passing libraries to deal with communication� All
these parallel codes take advantage� in same way� of problem properties� such
as the ones discussed above� in order to get e�ciency� However� data�parallel

language constructs are less �exible than message�passing routines� The ex�
ecution model is single�threaded with a globally shared address space� With
these languages we have similar di�culties to expose problem properties than
with a sequential language� While there are many e�cient message�passing ir�
regular numerical codes� for many problems� however similar implementations
using a data�parallel language is currently an open question�

The approach we follow consists in de�ning new data�parallel language con�
structs in the context of HPF that permit to identify the role of the important
data structures in the code� to express exploitable key properties of the prob�
lem nature �data properties� and to manipulate irregular data structures� The
compiler is in turn instructed to recognize the new constructs to use them
when producing the parallel code� For large applications� the complexity of
the compiler may be lightened by leaving most of the work associated with
data distribution� communication and synchronization to an external runtime
library� The rest of the paper is dedicated to show the proposed solutions for
a number of representative numerical irregular codes�

� Sparse Matrix Algebra

Sparse matrices arise naturally when discretizing continuous operators� They
appear in a large number of important scienti�c and engineering codes� which
are classi�ed as irregular applications 	
��������� This is because sparse ma�
trices are represented using compact data formats� which necessitates heavy
use of indirect addressing through pointers stored in index arrays� Such com�
pact formats are used in order to not store zero elements� saving memory and
avoiding arithmetic with zero elements to save �oating�point operations�

Normally� it can be distinguished two broad categories of sparse�matrix rep�
resentations 	
��� Structured representations� that exploit some regular struc�
ture of the �ll �set of locations of the nonzero elements�� and unstructured
representations� that do not impose any requirements to the �ll� However� in
this sections and the next one� we will consider an operative classi�cation of
sparse�matrix applications 	���� We will use the term static to comprise those
applications that only read the sparse�matrix data� That is� the �ll of the ma�
trix does not change during computation� The other class is called dynamic�
including those applications that read and write the sparse�matrix data� In
this case� the �ll of the matrix may change during computation�

An e�cient parallelization of a sparse�matrix application requires exploitation
of data locality and a simple and fast method to locate non�local data� Most
parallel implementations are tuned according to the �ll pattern of the sparse
matrix� in order to attain maximum e�ciency 	���� According to this� some

�

sparse compact representation is more appropriate than others to get the best
e�ciency�

In a data�parallel environment� such as HPF� we are constrained to the lan�
guage constructs of a sequential language� such as Fortran����
� and some
directives used to express parallelism and to instruct the compiler on how to
produce the parallel code� Currently HPF does not include any directive to link
the arrays of the sparse�matrix representation to the sparse matrix itself 	����
However� having such directive permit to de�ne sparse data distributions with
the property of� on the one hand� exploiting data locality and� on the other
hand� simplifying the location of non�local data� We have proposed the di�
rective SPARSE to �ll this gap 	������ For instance� for the example shown in
�gure � �a�� we would write

�HPF� SPARSE�CRS�Data�Col�Row�� �� A�N�N�

to express that Data� Col and Row are the arrays associated with the CRS
representation of a sparse matrix� In addition� the sparse matrix is giving a
name� A in the example shown� This name is actually a template� because it
does not exist in the original sequential code� We can use it only inside other
HPF directives� The sparse name can be referenced in a distribute directive�
For example�

�HPF� DISTRIBUTE�CYCLIC�CYCLIC� �� A

speci�es that the sparse matrix A should have its rows and columns distributed
cyclically over some two�dimensional arrangement of processors� Observe that
A names a complete �uncompressed� sparse matrix� Therefore� both nonzero
and zero elements are considered for distribution� As a consequence of this
speci�cation� the arrays Data� Col and Row will be mapped to the processors
in such a way that the above distribute directive is obeyed� This kind of sparse
distribution was called BRS �Block Row Scatter� in 	������

For mapping purposes� the sparse matrix is dealt as a dense matrix� Hence
the workload is balanced using similar techniques than if the code were dense�
Besides the compiler can derive simple formulas to determine the location of
each sparse data entry� Communication schedules are easy to compute and
optimize� with low overhead�

The above BRS pseudo�regular sparse data distribution can be used to ob�
tain e�cient parallel codes using static sparse matrices in an e�cient way� For
instance� 	�� shows a simple parallel implementation of the Conjugate Gradi�
ent iterative method for solving large sparse systems of linear equations� A
complete discussion of static sparse computations on the framework of the
Vienna Fortran compilation system can be found in 	
��� BRS �and MRD�
Multiple Recursive Decomposition� discussed in the next Section� distribu�

DO k � �� n
Find pivot� Aij

IF �i �NE� k�
swap A�k��	n� and A�i��	n�

END IF

IF �j �NE� k�
swap A��	n�k� and A��	n�j�

END IF

A�k��	n�k� � A�k��	n�k�
 A�k�k�
DO j � k��� n

DO i � k��� n
A�i�j� � A�i�j� � A�i�k�A�k�j�

END DO

END DO

END DO

Figure �� Direct right�looking LU algorithm

tions are described in detail and compilation and runtime issues related to
their implementation are analyzed�

For dynamic sparse�matrix applications� the situation is much more complex�
The explained approach must be extended to take into account that the �ll of
the matrix may change while computing� Our solution is to de�ne a dynamic
compact format to represent the sparse matrix� keeping charge of the possible
�ll�in� The rest of the section is dedicated to discuss in detail a dynamic case
study�

��� Dynamic Case Study� Direct Sparse Solvers

A wide range of numerical applications include the solution of large sparse
systems of linear equations� There are two di�erent approaches to solve such
systems� direct and iterative methods� In direct methods�	������ the system
is converted into an equivalent one whose solution is easier to determine by
applying a number of elementary row and�or column operations to the coef�
�cient matrix� A di�erent approach is taken in iterative methods	����� where
successive approximations to obtain more accurate solutions are carried out�

Direct methods for solving sparse systems exhibit di�erent problems to those
of iterative methods� The coe�cient sparse matrix is transformed� or factor�
ized� operation that may change the �ll of the matrix� The compact rep�
resentation of the matrix must take into consideration this fact� Also� row
and�or column permutations of the coe�cient matrix �pivoting� are usually
accomplished in order to assure numerical stability and reduce �ll�in� All these
features make direct methods much harder to parallelize than iterative solvers

Let us take the sparse LU factorization as a working example 	���� Figure �
shows an in�place code for the direct right�looking LU algorithm� where a

�

�HPF� PROCESSORS� DIMENSION�dim��� linear
�HPF� REAL� DYNAMIC� SPARSE�LLCS�first� last� vsize� DOUBLY���� A�n�n�
�HPF� REAL� DYNAMIC� SPARSE�CVS�vcoli� vcolv� size���� VCOL�n�
�HPF� ALIGN iq��� WITH A�����
�HPF� ALIGN vpiv��� WITH A�����
�HPF� ALIGN vmaxval��� WITH A�����
�HPF� ALIGN VCOL��� WITH A�����
�HPF� DISTRIBUTE ���CYCLIC� ONTO linear�� A

Figure �� HPF declarative section for the sparse LU code

n�by�n matrix A is factorized� The code includes a row and column pivoting
operation �full pivoting� to provide numerical stability an preserve the sparsity
rate�

Apart from linking the compact representation arrays to the sparse nature
of the problem� as was seen previously with the SPARSE directive� an ad�
ditional e�ort is needed to select the appropriate compact format� Standard
compressed formats are not the most suitable schemes to support e�ciently
the �ll�in problem and pivoting operations� Dynamic formats� such as linked
lists� are more �exible that standard static formats� such as CRS� Pivoting
operations are accomplished by just interchanging pointer values� Fill�in is
easily managed� as entry insertion�deletion operations are simple when using
linked lists�

Full�pivoting sparse LU decomposition can be represented by two�dimensional
doubly linked lists� in order to make data accesses both by rows and by
columns� Each item in such a dynamic structure stores not only the nonzero
value and the local row and column indices� but also pointers to the previous
and next nonzero element in its row and column �four pointers in total�� The
complexity of the lists can be simpli�ed if the full pivoting is replaced by a par�
tial pivoting� where only columns �or rows� are swapped� This fact may imply
large memory and computation savings because we can use a one�dimensional
doubly linked list structure as the compact representation� In such structure�
each linked list represents one column �row� of the sparse matrix� where its
nonzero elements are arranged in growing order of the row �column� index�
Each item of the list stores the row �column� index� the matrix nonzero entry
and two pointers� These compact representations were called LLRCS �Linked
List Row�Column Storage� and LLCS �Linked List Column Storage� �or LLRS
for rows� in 	
�����

Figure � depicts an HPF declarative section for the parallel sparse LU code
�only the HPF directives are shown�� Matrix A is de�ned as sparse and repre�
sented by the LLCS format� The arrays of pointers �rst and last indicate the
�rst and the last nonzero entry� respectively� of each column of A� The array
vsize stores the number of nonzero entries on each column of A� We have also
de�ned a sparse array VCOL� which is represented as a compressed �packed�
vector �CVS format�� This array will contain the normalized pivot column of
A� calculated in each outer iteration of the algorithm�

�

�HPF� INDEPENDENT� NEW �aux�i�amul�product�
loopj� DO j � k�	� n
�HPF� ON HOME �vpiv�j��� RESIDENT �A���j�� BEGIN

aux �
 vpiv�j��p
IF ��NOT�ASSOCIATED�aux�� CYCLE
IF �aux�index � k� CYCLE
amul � aux�value
vsize�j� � vsize�j��	
vpiv�j��p �
 aux�next
aux �
 aux�next

loopi� DO i � 	� size
product � �amul�vcolv�i�
DO
IF ��NOT�ASSOCIATED�aux�� EXIT
IF �aux�index
� vcoli�i�� EXIT
aux �
 aux�next

END DO
outer�if� IF �ASSOCIATED�aux�� THEN

IF �aux�index �� vcoli�i�� THEN
aux�value � aux�value � product

ELSE
CALL insert�aux�vcoli�i��product�first�j��p�vsize�j��
IF �vpiv�j��p�index
� aux�prev�index� vpiv�j��p �
 aux�prev

END IF
ELSE outer�if
CALL append�vcoli�i��product�first�j��p�last�j��p�vsize�j��
IF ��NOT�ASSOCIATED�vpiv�j��p�� vpiv�j��p �
 last�j��p

END IF outer�if
END DO loopi

�HPF� END ON
END DO loopj

END DO main

Figure �� Outline for an extended HPF�� specication of the submatrix update
phase of the right�looking partial pivoting LU algorithm

The last sentence in the declaration section distributes cyclically the columns
of the sparse matrix A over a one�dimensional arrangement of abstract proces�
sors �linear�� Previously� three dense arrays� iq� vpiv and vmaxval� were aligned
with the columns of A� Therefore� after the distribution of A� these three ar�
rays also appear distributed in a cyclic fashion over the processors� Finally�
the sparse array VCOL is aligned with the rows of A� Hence� after distribut�
ing A� VCOL is completely replicated over all the processors� The reason of
this replication is to make normalized pivot column visible to all processors�
enabling the subsequent parallel submatrix update�

As sparse data is accessed through pointers� the default owner compute rule
is not the most appropriate work distribution scheme for some phases of the
computation� For instance� during the update submatrix phase �loops j and i�
in �gure ��� we want that processor that owns entry j of the pivot row �vpiv���
be in charge of updating row i of the submatrix� The approved HPF�� extension
ON permits such computation assignment� The approved extension RESIDENT
is also used to assert that column j of A is stored in the same processor that
owns vpiv�j�� hence no interprocessor data movement is required �see �gure ���

An implementation of the above code was done on a Cray T�E platform� Due
to the lack of a complete HPF�� compiler� all directives were manually trans�
lated into calls to the DDLY �Data Distribution LaYer� runtime library 	
���
The code was written in Fortran��� and the Cray SHMEM library was used for
communications� Parallel execution times and speed�up of this implementa�

��

1 2 4 8 16
Number of Processors

.38

.96

2.4

6

15

38

95

E
xe

cu
tio

n
T

im
e

in
 s

ec
. (

lo
g)

LU-F90-SHMEM
 SHERMAN2
 ORANI678
 WANG1
 WANG2
 UTM3060
 GARON1
 EX14
 SHERMAN5
 LNS3937
 LHR04C
 CAVITY16

1 2 4 8 16
Number of Processors

1

2

4

8

16

Sp
ee

d
U

p.
 (

lo
g)

LU (F90, Cray SHMEM)

 SHERMAN2
 ORANI678
 WANG1
 WANG2
 UTM3060
 GARON1
 EX14
 SHERMAN5
 LNS3937
 LHR04C
 CAVITY16

Figure �� Parallel sparse LU execution times and speed�up for di�erent Har�
well�Boeing sparse matrices� using F�� linked lists and Cray T�E SHMEM

tion is shown in �gure �� taking the sparse matrices from the Harwell�Boeing
suite 	��� and the University of Florida Sparse Matrix Collection 	���� The
e�ciency of the parallel code is high when the size of the input matrix is
signi�cantly large� Due to �ll�in� some load imbalances may appear during
factorization� but they were not signi�cant in any of our experiments� An
in�depth description of the sparse LU factorization can be found in 	����
���

� Unstructured Domains

Many scienti�c and engineering applications work with unstructured domains
to provide a general solver being able to handle any problem input to the ap�
plication� In other case scientists should write speci�c solvers for the structure
of each problem� However� while providing a useful tool for scientists� gen�
eral solvers represent a challenge for high�performance implementation� Some
representative examples include �nite elements or di�erences for solving par�
tial di�erential equation systems� computational �uid dynamics� or molecular
dynamics simulations�

Finite element and di�erence methods are computational tools for deriving
approximate solutions to a system of partial di�erential equations� that gov�
erns the behaviour of some physical system� In order to solve numerically the
system� the physical domain is discretizing imposing a grid� In case of �nite
di�erences� the grid is usually regular� In general� at each grid point a linear
equation that relates the value of some physical magnitude at such point to
its value at neighbouring grid points has to be solved� The resulting sparse
coe�cient matrix of the full equation system has block diagonal �ll structure�
and can be solved using some iterative or direct solver� as was discussed in
the previous Section� However� new di�culties arise if the grid is dynamic� as

��

in molecular dynamics simulations�

In case of �nite elements� the grid divides the domain into a large number of
small areas called elements� that comprise sets of interacting grid points� In
addition� for most applications� the grid is not a regular structure� deriving a
large� sparse and �ll unstructured coe�cient matrix�

These applications contain irregular data access patterns related to unstruc�
tured problem domains� Such common feature poses hard di�culties for auto�
matic parallelization or data�parallel implementation� Many types of unstruc�
tured problems have been succesfully parallelized 	��������� However� in most
cases the software has been di�cult to write� In addition� expressing the ir�
regularities and e�cient mapping onto particular multiprocessors has implied
the development of tedious nonportable code�

In terms of high�performance implementation� these applications can be dealt
as a sparse matrix problem� but with the additional di�culty that the sparse
coe�cient matrix is often unstructured� A di�erent and more usual approach
consists in directly handling the �nite element grid� The grid is irregular but
the computations ful�ll locality properties�

As was discussed in section �� obtaining an e�cient data�parallel implemen�
tation of unstructured application needs to express some problem properties
at the language and�or compiler level� Codes rely blindly on some simple lan�
guage constructs that describes data access patterns� but not the high�level
structure of the problem �computations�� Data access patterns are irregu�
lar� however problem structure tends to be regular� exhibiting spatial and�or
temporal localities� Compilers simply do not take advantage of such inherent
regular properties�

We will explain how to extend the SPARSE HPF directive described in the
previous Section to not only relate language data structures to problem data
structures� but also to express regularities inherent to the nature of the prob�
lem� Such discussion will be done for two example cases� a static unstructured
domain application �data is only read�� �nite element codes� and a dynamic
unstructured domain application �data is read and written�� molecular dy�
namics simulations�

��� Static Case Study� Finite Element Codes

In most programs handling unstructured meshes we can �nd pieces of code
similar in structure to the sample code in �gure �� This loop actually represents
a matrix�vector product PROP� � WEIGHT � PROP�� Arrays L� R� U and D
represent the non zero weights in matrix WEIGHT� The use of such arrays and

��

INTEGER NEIGHBOR�NE���
INTEGER PROP��NE����PROP��NE��L�NE��R�NE��U�NE��D�NE�

DO i���NE

PROP��i��PROP��i�
�L�i��PROP��NEIGHBOR�i����
�R�i��PROP��NEIGHBOR�i����
�U�i��PROP��NEIGHBOR�i����
�D�i��PROP��NEIGHBOR�i����

END DO

Figure �� Example piece of code handling a unstructured mesh

the indexing array NEIGHBOR is due to the fact that this is an sparse problem
and the programmer is optimizing the representation of the problem by using
indirections instead of using one two�dimensional array for the sparse matrix
WEIGHT� Each element in arrays PROP� and PROP� is an associated value
corresponding to one mesh element in the physical model� So� only physically
neighboring mesh elements are considered in the matrix�vector product�

From this code we can extract two observations that will become important
while parallelizing unstructured meshes applications� First� the code performs
a regular computation stencil which includes a limited number of array ele�
ments� Those elements correspond only to physically neighboring mesh ele�
ments which are statically de�ned in the input data of the program � Speci��
cally in the contents of the array NEIGHBOR which is related with the structure
of the problem mesh� Second� the term physically neighboring is not related
with storage neighboring� Mesh elements adjacent in the space may not be
stored contiguously in a memory array representing such mesh� Although the
computation stencil is regular� speaking in terms of code analysis� the pre�
sented sample code is highly irregular because of the use of an array for index�
ing another one� Compilation analysis �nds that accesses to array PROP� are
unpredictable because they depend on the run time contents of array NEIGH�
BOR�

The example solver shown in �gure � uses only the array NEIGHBOR to direct
computations through the problem domain� Nevertheless this solver does not
use all existing information describing the unstructured mesh� Some other
structures �arrays� are often used in external partitioners to compute data
distributions� Figure � shows in which way an unstructured mesh is described
by X� GRID and NEIGHBOR arrays�

The objective is� inside a data�parallel environment� to distribute this repre�
sentation of the unstructured mesh preserving spatial locality in all the levels
of the representation� The vertices of the mesh are stored in X and hence this
array is the key data structure to express at the language level the spatial
locality that exhibits the problem� As all data accesses in �gure � are local at
the mesh domain� we should distribute array X over the processors in such a

��

-2 -1 0 1 2

2

1

0

-1

-2

-3

-3

X1 X2 X3 X4

X13 X14 X15 X16

X5 X6

X7 X8

X9 X10

X11 X12

E1

E4

E2

E6

E3

E5

E7 E9E8

X(NV,2)
1 -2 2
2 -1 2
3 0 2
4 2 2
5 -2 1
6 -1 1
7 0 0.5
8 2 0.5
9 -2 -1
10 -1 -1
11 0 -0.5
12 2 -0.5
13 -2 -2
14 -1 -2
15 0 -2
16 2 -2

GRID(NE,4)
1 1 2 5 6
2 2 3 6 7
3 3 4 7 8
4 5 6 9 10
5 6 7 10 11
6 7 8 11 12
7 9 10 13 14
8 10 11 14 15
9 11 12 15 16

NB(NE,4)
1 10 2 10 4
2 1 3 10 5
3 2 10 10 6
4 10 5 1 7
5 4 6 2 8
6 10 5 3 9
7 10 8 4 10
8 7 9 5 10
9 8 10 6 10

Figure �� Up
 Actual structure of the problem domain� Down
 X stores coordinates
for mesh vertices� GRID stores the denition of the mesh itself �each element is a
set of � vertices�� NB stores the list of neighbors for each element of the mesh�

way that a spatial decomposition of the mesh is accomplished� This mapping
can be expressed by extending the SPARSE directive as follows�

�HPF� REAL� DYNAMIC� SPARSE�COORDINATES�X�NV���� �� A�����

�HPF� DISTRIBUTE �BLOCK�BLOCK��� A

Instead of specifying a number of arrays and a compact representation� as with
sparse problems� the directive instructs the compiler to consider the indicated
array �X� as a set of coordinates of spatial locations� The de�ned template A
represents such spatial domain� and hence is a construct directly related to the
mesh� The BLOCK distribution directive applied to the assigned placeholder
A results in a spatial decomposition of the array X into subdomains� and the
mapping of such subdomains over the processors� This type of decomposition
was called MRD �Multiple Recursive Decomposition� in 	������ Observe that
the distribution operation is executed at runtime� when the contents of X is
known�

��

The next step is distributing other data structures representing higher levels
in the mesh �like edges� polygons� cubes or other kind of mesh elements��
Such mesh elements contain no geometric information but each one is related
to some lower level structures �like vertices� already distributed in the former
phase� These distributions can be written as follows�

�HPF� REALIGN GRID�I��� WITH X�GRID�I������

�HPF� REALIGN NEIGHBOR�I��� WITH GRID�I���

�HPF� REALIGN PROP��I���� PROP��I���� L�I���� R�I����

�HPF�	 U�I���� D�I��� WITH GRID�I���

�HPF� REALIGN PROP��NEIGHBOR�I���� WITH NEIGHBOR�I���

The �rst alignment is an extension of the standard HPF directive� and was
called pointer alignment in 	
�
��� This directive distributes an indirection
array in such way that each row of the array is stored in the processor own�
ing the row in some other array referenced by the pointer� Speci�cally� each
ith�row of array GRID has been aligned with the row of array X pointed by
GRID�I���� The resulting distribution groups in each partition the elements
of the array corresponding to closely located mesh elements� The next two
alignment directives places several arrays in such a way that spatial locality
is exploited� These are standard directives� The last directive is also a new
extension of the standard� that we call target alignment� It is possible that�
as consequence of the previous distributions� some partitioned arrays point to
nonlocal array elements� Accesses using such indices can not be translated to
local coordinates neither executed without fetching remote data before� But
we can not fetch data before knowing which arrays are going to be accessed
throught those indirections� The target alignment speci�es that array PROP�
is going to be accessed through the indirections stored in array NEIGHBOR�
This way� the compiler is instructed on how to grab needed nonlocal data at
runtime�

Some evaluation tests have been carried out using a real code of ��D com�
putational �uid dynamics �CFD�� The code was parallelized rewriting the
HPF directives inserted in it by calls to the DDLY library� The executions
presented in �gure � were conducted in a IBM SP� multicomputer� A PVM
implementation of the DDLY library was used� The test data consisted in a
mesh with approximately ������ cells� The solver computed ��� iterations
until convergence was reached�

I�O and distribution time are the initialization phase of the program� The
test yields excellent results for the execution of the solver loop� which indicate
that the exploitation of the spatial locality through the use of the SPARSE
directive and indirection alignments is nearly optimal� Also� the time spent in
communications during the computation remains very low� A more detailed
analysis of parallel �nite element codes can be found in 	
��
��

�

Nodes CPU Reduce Scatter Dist/Align I/O Total

1 71.94 0.01 0.01 3.09 15.58 90.63

2 32.20 1.99 0.37 3.04 14.78 52.37

3 19.75 1.38 0.20 3.21 14.79 39.33

4 14.24 0.86 0.22 3.41 14.86 33.59

5 11.32 1.37 0.23 3.68 14.82 31.42

6 9.41 1.12 0.22 3.41 14.12 28.29

7 8.00 1.26 0.37 3.51 14.05 27.19

8 6.99 1.23 0.22 3.62 14.04 26.09

0 10 20 30 40 50 60 70 80 90 100
Elapsed time (seconds)

1

2

3

4

5

6

7

8

N
um

be
r

of
 p

ro
ce

ss
or

s

I/O Time
Data distribution
Communication
CPU Time

Figure �� Decomposition of execution times for GCCG program parallelized with
the DDLY library on the IBM�SP�

��� Dynamic Case Study� Molecular Dynamics

Molecular dynamics �MD� simulations consider a set of particles �atoms or
molecules� subject to the Newton�s classical equations of motion� which are
integrated to compute and understand the movement of each particle� With
this technique a number of microscopic and macroscopic values can be esti�
mated� such as transport and di�usion coe�cients� phase diagrams� and so on�
many of them di�cult to obtain experimentally�

To simplify the exposition we will consider the simulation of a two�dimensional
ensemble of particles subject to a Lennard�Jones potential� vLJ�r� � ������r����
���r���� where the cuto� distance is rc � ��
�� To integrate the equations of
motion of the particles� a �nite�di�erence leapfrog algorithm on a Nos�e�Hoover
thermostat dynamics is used�

Figure � shows the algorithmic structure of such simple short�range MD simu�
lation� The �rst action is reading particle positions and velocities �Read Data��
Some other quantities are also read� such as the size of the simulation box� the
cuto� distance of the potential� the number of timesteps� etc� After some nor�
malizations and simulation box adjustments �Initialization�� a loop running
over the timesteps is started� This loop is strip�mined into two �not perfectly�
nested loops� The outer loop steps between strips of the same size �THop��

��

Read Data
Initialization
DO TimeStep � �� NumTimeSteps� THop

Link�Cell Building
Neighbor List Building
DO ts � TimeStep� TimeStep�THop��

Force Calculation
Velocities and Positions Updating
Macroscopic Parameters Calculation

END DO

END DO

Write Data

Figure �� Algorithmic structure of a simple short�range MD simulation�

and the inner loop steps between single timesteps within a strip�

The outer loop is used to determine at which timestep the link�cell and the
neighbor list are built� These data structures are used as book�keeping meth�
ods� that avoid to waste CPU cycles in calculating null force contributions on
each particle� For each iteration of that loop particles are sorted into the link�
cell lattice� and all the pairs of neighboring particles �separated by a distance
somewhat larger than the potential cuto�� are computed and stored in a list�
To avoid border e�ects periodic boundary conditions are implemented at the
link�cell level�

The inner loop reuses the neighbor list during a strip of iterations �THop��
Force on each particle is calculated by integrating the discretized equations
system� taking the interacting particles from the neighbor list� These computa�
tions are halved by resorting to the Newton�s third law� Afterwards velocities
and positions are updated for each particle and some macroscopic parameters
are calculated also� A more detailed description of this phase was shown in
�gure � �b�� Finally� after exhausting all timesteps� positions and velocities of
all particles are written in a �le� in addition to some macroscopic parameters�

MD codes exhibit a natural parallelism that comes from the fact that the force
calculations� and the velocity�position updates� can be done simultaneously
for all particles� To exploit this parallelism� a number of partitioning and
mapping strategies has been developed� The approach we followed is termed
domain decomposition 	������� as shown in �gure �	�

An initial block�wise partitioning for the input data to be read is assumed�
Each processor reads the input data �particle positions�velocities and input
parameters� for its assigned initial partition� At the �rst timestep� link�cell
lattices are built in parallel� A processor will have non�null data only in those
cells belonging to its partition� Afterwards a hierarchical partitioning strat�
egy is executed� similar to MRD� The simulation box is �rst partitioned at
the link�cell level along the �rst dimension� Each strip is then sub�partitioned
independently along the second dimension� In general� the number of par�

�

Read Data
Initialization
DO TimeStep � �� NumTimeSteps� THop

Link�Cell Building
IF �TimeStep �EQ� �� THEN

Hierarchical Domain Decomposition
Array Shu�e Redistribution
GPU Particle Schedule Building
Guest Particle Update �GPU�
Link�Cell Updating

ELSE

POA Particle Schedule Building
Particle Ownership Adjustment �POA�
GPU Particle Schedule Building
Guest Particle Update �GPU�
Link�Cell Updating

END IF

Neighbor List Building
DO ts � TimeStep� TimeStep�THop��

Force Calculation
Velocities and Positions Updating
Macroscopic Parameters Calculation
Guest Particle Update �GPU�

END DO

END DO

Write Data

Figure �	� Algorithmic structure of a simple parallel short�range MD simulation�

tition levels equals the number of dimensions of the box� The divisions are
accomplished in such a way that some performance parameter is optimized�
The imbalance in the number of particles is the most common parameter� but
some other can be chosen� such as the imbalance in the number of interactions
�density�� The partitioner is internal� general enough to cover most cases with
average e�ciency su�ciently high� Besides� the partitioner generates a com�
pact representation of the decomposition� that permits to optimize subsequent
computation stages �mapping arrays are avoided��

After cell�decomposition of the simulation box� a shu�e redistribution of all
data arrays �in particular� position and velocity arrays for the particles� is
carried out� Each processor will store locally positions�velocities for the par�
ticles belonging to its cell�domain� The processors will also store a copy of
the particle positions�velocities arranged at nearest neighbor link�cells� This
communication interchange between neighbor processors is accomplished by
the guest particle update �GPU� stage in �gure �	� Previously� a GPU particle
schedule is built� an array that indicates what processors will receive particles
from a particular set of border cells� GPU stage guaranties that all accessed
data by a processor is locally available� either as owned data or guest data� As
a consequence� all computations can be carried out using only local indices�
without any type of control over memory references�

Each cell�domain has the same structure as the original program� A processor
can operate on its domain� with no interaction with other processor� until the
next synchronization point� A runtime library carries out all synchronization

��

work� in a transparent way for the user� At each synchronization point� the
library updates the guest particles across domains �GPU�� reusing the �rst
schedule computed �if the cell�domain is not repartitioned� the schedule array
does not change�� The Newton�s third law allow us to replicate force calcula�
tions instead of propagating non�local writes� saving communication overhead�

Due to the dynamic nature of the simulation� some particles may change
of cell�domain� Instead of carrying out global redistributions� we have im�
plemented a particle migration stage� called particle ownership adjustment
�POA�� that communicate to the new owner �always a neighboring processor�
those particles that have abandoned its cell�domain� During this stage� the
communication schedule for the GPU is also updated�

To exploit the problem spatial locality exhibited by the MD code� the extended
SPARSE directive as de�ned in subsection ��� is used� For example�

�HPF� REAL� DYNAMIC�

�HPF�	 SPARSE�

�HPF�	 COORDINATES�X�N��Y�N���

�HPF�	 THRESHOLD
R

�HPF�	 LINKCELL�IX�IY��LCPNT�LCCNT�

�HPF�	 � �� B���LX���LY�

describes a set of N particles with �D coordinates� Problem domain borders
are de�ned by the intervals 	
�LX� and 	
�LY�� Note that the dimensions of the
placeholder specify real instead of integer bounds because it is not de�ning
an integer index space� The keyword COORDINATES speci�es a list with the
tables containing geometric information about the elements during program
execution� In the particular example� arrays X and Y store the �D coordinates
of the spatial domain�

THRESHOLD controls the behavior of data replication for selected data dis�
tributions� It is used to provide an expression for the length of the overlapping
area between any neighboring domains of data distribution� Replication guar�
antees that all particles of neighbor partitions that can be involved in a local
computation will be available in local memory as a guest element�

The LINKCELL keyword describes the implementation of the link�cell used
in the program� The �rst argument is the number of cells considered during
execution� The second is a list with the arrays which contain link�cell data� We
support both linked�lists and dense pointer�arrays implementations as they are
the most popular�

The representations of particle sets in Fortran programs use to be very het�
erogeneous� The set of data arrays related to particles depends on what is
done in each simulation� although the arrays containing geometric data are

��

0 8 16 24 32 40 48 56 64 72
0

16

32

48

64
40,000 particles
160,000 particles
640,000 particles

0 8 16 24 32 40 48 56 64 72
0

20

40

60

80

100

120

40,000 particles
160,000 particles
640,000 particles

Figure ��� Speedup and e�ciency of the NBF simulation tested on the Cray T�E
for three di�erent particle sets�

always present� For sake of simplicity in directives� the COORDINATES key�
word speci�es only those arrays� while the other related arrays are speci�ed
using standard HPF ALIGN directive with perfect alignment� as for example�

�HPF� ALIGN WITH X �� VX� VY� FX� FY

�HPF� REDISTRIBUTE�BLOCK�BLOCK� �� B

Finally� the placeholder of the problem domain� B must be distributed� us�
ing the standard directive� The BLOCK distribution method used in each di�
mension of the placeholder indicates geometric partitioning �i�e� a value�based
distribution� of the set of arrays bound to the placeholder via SPARSE and
ALIGN directives�

A DDLY�based implementation of the described MD code was executed on a
Cray T�E� with di�erent number of particles �domain size�� Figure �� shows
the speedups and e�ciencies obtained on the Cray T�E for each problem size�
The neighbour list was updated every �� timesteps� The cuto� distance was
�xed to ��
� and the size of each link�cell was ����� The size of the simulation
box was �
�� � �
��� Each test has simulated ���� timesteps using di�erent
number of processors ranging from � to ��� In the case of the ������� particle
data set� we have considered speedup ��� for � processors� as this was the
minimum number of processors required to execute the simulation�

We have to remark the good scalability of the parallel code� E�ciency gets
closer to the ideal full parallel program as problem size increases because of
the small time spent in communications �almost constant for di�erent problem
sizes and numbers of processors�� The behaviour remains stable as dynamic
problems evolve� In 	

�
�� a detailed discussion of parallel molecular dynamics
codes can be found�

��

� Related Work

We have distingyuished two di�erent approaches to handle irregular compu�
tations� One possibility is based on extending the data�parallel language with
new constructs suitable to express non�structured parallelism� With this infor�
mation� the compiler can perform a number of optimizations� usually embed�
ding the rest of them into a runtime library� In Fortran D 	���� for instance� the
programmer can specify a mapping of array elements to processors using an�
other array� Vienna�Fortran 	���� on the other hand� lets programmers de�ne
functions to specify irregular distributions� HPF�� 	��� provides a generalized
block distribution �GEN�BLOCK�� where the contiguous array partitions may
be of di�erent sizes� and an indirect distribution �INDIRECT�� where a map�
ping array is de�ned to specify an arbitrary assignment of array elements to
processors�

All these language constructs usually lead to low e�ciencies when they are
applied to a wide set of irregular codes� The main drawback is that localing
non�local data is in general an expensive task� Our SPARSE directive� however�
allows to specify pseudo�regular distributions� that do not su�er from this
problem�

The second approach is based on runtime techiques� that is� the non�structured
parallelism is captured and managed fully at runtime� These techniques au�
tomatically manage programmer�de�ned data distributions� partition loop it�
erations� remap data and generate optimized communication schedules� Most
of these solutions are based on the inspector�executor paradigm 	����������

This technique consists in the insertion of runtime support in the �nal parallel
code to analyze each access and decide if the access is local or remote� In the
case of a remote access� remote data is sought and stored locally by the runtime
support before the data access is allowed to proceed� The authors produced
a runtime library known as PARTI�CHAOS 	����
� that was used in manual
parallelization of irregular programs� The introduction of this paradigm in
parallel compilation was carried out� for instance� at Rice University in the
Fortran D compilation system 	�����
���

The Fortran D compiler base domain partitioning on an user�provided func�
tion that map array elements to processors depending on their values� Usually�
value�based decompositions 	������ cannot be represented in a compact form�
thus a mapping array must be returned by the partitioner� This solution is
expensive and inviable for large systems� Also� this distribution method does
not guaranty that all accessed data is locally available during all computation
stages� As a consequence� inspector code is required to collect references to
non�local data� Work distribution for the generated parallel code is derived

��

directly from the computed data decomposition� Although parallel code uses
local indices when accessing arrays� indirection data structures keep contain�
ing indices pointing to the original global arrays� The presence of indirections
through these data structures implies the use of a translation scheme to �nd
out the current location of the requested data �processor � o�set�� Such trans�
lation scheme has a high overhead in memory or communications� as usually
involves a problem�size translation table� Communication schedule for gath�
ering non�local data is generated from the above operations�

Our parallelization method� however� is based on a provatization model in�
cluded on the data�parallel framework� Data that represent the domain of
the problem is partitioned using value�based decompositions �domain decom�
positions� trying to minimize the intractions among the subdomains� Those
interactions �references to non�local data� are dealt transparently to the code
by using overlapping areas� where the referenced non�local data elements are
stored locally�

Opposite to the inspector�executor strategy� the computation of the overlap�
ping areas is not based on the analysis at runtime of the data references in
the code� Overlapping areas are precalculated at compile�time from the infor�
mation about problem properties introduced in teh code through the direc�
tive SPARSE� as well as the data distribution speci�ed through the standard
DISTRIBUTE directive� Overlapping areas are �nally computed in completion
during the data distribution phase� when all neede runtime data is known� All
irregular computations are executed using the owner compute rule� However�
if the data distribution implies non local writes� these operations are repli�
cated� All processors but the owner of the data element writes on the copy in
their overlapping areas� These writes will be simply discarded� This way there
is no need to propagate the non�local write operations and the semantics of
the original application is maintained�

Finally� for sparse matrix computations there is a di�erent approach proposed
in the literature 	������ based on the automatic transformation of a dense pro�
gram� annotated with sparse directives� into a semantically equivalent sparse
code� They show this approach on simple and static sparse codes� However�
it is not clear its feasibility for more complex programs� like dynamic sparse
computations �as in the LU� or simply the transposition of a sparse matrix�
The design of such sparse compiler os very complex� in such a way that no
implementation of it is available for general and real problems�

��

� Conclusions

Numerical irregular applications show subscripted subscripts in their code�
usually introduced by the programmer in order to reduce computation over�
head and optimize the use of the memory hierarchy� These complexities in the
code often hide to the compiler spatial and temporal localities inherent to the
application�

Exposing the key data structures in the application as well as some problem
properties that the data ful�ll� the compiler can analyze the code� exploit data
locality and generate e�cient parallel code�

This paper describes a number of di�erent applications that show the general�
ity of the method discussed� and that HPF can be used to program e�ciently
these applications with only a small number of extensions�

Acknowledgements

We gratefully thank L�F� Romero� G� Bandera and M� Ujald�on� at the Dept�
of Computer Architecture� University of M�alaga� Spain� and R� Doallo and
J� Touri�no� at the Dept� of Electronics and Computation� University of La
Coru�na� Spain� for the development of some of the methods and experiments
described in this paper�

We also thank Ian Du� and all members in the parallel algorihm team at
CERFARCS� Tolouse �France�� for their kindly help and collaboration� as
well as S�ren Toxvaerd� at the Dept� of Chemistry� University of Copenhagen�
for providing us the example short�range molecular dynamics program�

Finally� we thank the CIEMAT �Centro de Investigaciones Energ�eticas� Medioam�
bientales y Tecnol�ogicas�� Spain� for giving us access to their Cray T�E mul�
tiprocessor� the CEPBA �Centro de Paralelismo de Barcelona�� Spain� for the
use of their IBM�SP� machine� and the Forschungszentrum J�ulich� Germany�
for the access to their Cray T�E system�

References

�
� R� Asenjo� LU Factorization of Sparse Matrices on Multiprocessors� PhD
Dissertation� University of M�alaga� Dept� Computer Architecture� December

�����

��

��� R�Asenjo� E� Gutierrez� Y� Lin� D� Padua� B� Pottengerg and E� Zapata� On
the Automatic Parallelization of Sparse and Irregular Fortran Codes� Technical
Report ���� � �Univ� for Illinois at Urbana�Champaign� CSRD� December
��	��

��� R� Asenjo� O� Plata� J� Touri�no� R� Doallo and E�L� Zapata� HPF�� Support
for Dynamic Sparse Computations� ��th� Int�l� Workshop on Languages and
Compilers for Parallel Computing � �Chapel Hill� NC� USA� August
�����

��� R� Asenjo� L�F� Romero� M� Ujald�on and E�L� Zapata� Sparse Block and
Cyclic Data Distributions for Matrix Computations� Adv� Workshop in High
Performance Computing
 Technology� Methods and Applications� �Cetraro�
Italy� June
���� ��������

��� M�P� Allen and D�J� Tildesley� Computer Simulation of Liquids� �Oxford
University Press� UK�
�����

�	� G� Bandera� M� Ujald�on� M�A� Trenas and E�L� Zapata� The Sparse Cyclic
Distribution against its Dense Counterparts� ��th Int�l� Parallel Processing
Symposium �IPPS����� �Geneve� Switzerland� April
���� 	���	���

��� R� Barret� M� Berry� T� Chan� J� Demmel� J� Donato� J� Dongarra� V� Eijkhout�
R� Pozo� C� Romine and H� van der Vorst� Templates for the Solution of Linear
Systems
 Building Blocks for Iterative Methods� �SIAM Press� USA�
�����

��� A� Bik� Compiler Support for Sparse Matrix Computations� Ph�D� Dissertation�
�University of Leiden� The Netherlands�
��	��

��� W� Blume� R� Doallo� R� Eigemann� J� Grout� J� Hoe�inger� T� Lawrence� J�
Lee� D� Padua� Y� Paek� B� Pottenger� L� Rauchwerger and P� Tu� Parallel
Programming with Polaris� IEEE Computer Magazine� ��
��� �December

��	� ������

�
� W� Blume� R� Eigenmann� J� Hoe�inger� D� Padua� P� Petersen� L� Rauchwerger
and P� Tu� Automatic Detection of Parallelism� A Grand Challenge for High�
Performance Computing� IEEE Parallel and Distributed Technology� �
�� �Fall

����� ������

�

� T� Brandes� S� Chaumette� M�C� Counilh� A� Darte� J�C� Mignot� F� Desprez
and J� Roman� HPFIT� A Set of Integrated Tools for the Parallelization
of Applications Using High Performance Fortran� Part II� Data�Structures
Visualization and HPF Support for Irregular Data Structures with Hierarchical
Scheme� J� Parallel Computing � ��
���� �April
���� ���
��

�
�� P� Brezany� O� Ch�eron� K� Sanjari and E�v� Konijnenburg� Processing
Irregular Codes Containing Arrays with Multi�Dimensional Distributions by
the PREPARE HPF Compiler� High�Performance Computing and Networking
�HPCN Europe����� �Mil�an� Italy� May
���� ��	���
�

�
�� W� Blume� R� Eigenmann� J� Hoe�inger� D� Padua� P� Petersen� L� Rauchwerger
and P� Tu� Automatic Detection of Parallelism� A Grand Challenge for High�
Performance Computing� IEEE Parallel and Distributed Technology � �
�� �Fall

���� ������

��

�
�� D�M� Beazley� P�S� Lomdahl� N� Gr�nbech�Jensen� R� Giles and P� Tamayo�
Parallel Algorithms for Short�Range Molecular Dynamics� World Scientic�s
Annual Reviews in Computational Physics� � �World Scienti�c� Ed� D� Stau�er�

��	�

��
���

�
�� S� Chatterjee� Programming Models� Compilers� and Algorithms for Irregular
Data�Parallel Computations� Int�l� J� High�Speed Computing � �
�� �June
����

�������

�
	� B� Chapman� P� Mehrotra and H� Zima� HPF�� New Language and
Implementation Mechanisms for the Support of Advanced Irregular
Applications� �th Workshop on Compilers for Parallel Computers� �Aachen�
Germany� December
��	�
����	�

�
�� B� Chapman� H� Zima and P� Mehrotra� Extending HPF for Advanced Data�
Parallel Applications� IEEE Parallel and Distributed Technology � �
�� �Fall

���� �����

�
�� T� Davis� University of Florida Sparse Matrix Collection� NA Digest � ��
���

�October
	�
����� ��
��� �July ���
��	�� ��
��� �June ��
�����

�
�� I�S� Du�� A�M� Erisman and J�K� Reid� Direct Methods for Sparse Matrices�
�Oxford University Press� NY�
��	��

��� I�S� Du�� R�G� Grimes and J�G� Lewis� Users� Guide for the Harwell�Boeing
Sparse Matrix Collection� �Research and Technology Div�� Boeing Computer
Services� Seattle� WA�
�����

��
� J��L� Dekeyser and P� Marquet� Supporting Irregular and Dynamic
Computations in Data�Parallel Languages� in� G��R� Perrin and A� Darte� eds��
The Data Parallel Programming Model � �Springer�Verlag� Berlin� Germany�
LNCS

���
��	��

���� G� Fox� S� Hiranandani� K� Kennedy� C� Koelbel� U� Kremer� C��W� Tseng and
H� Wu� Fortran D Language Speci�cation� Tech� Rep� COMP�TR������ � �Rice
University� Computer Sience Dept��
����

���� G� Fox� R�D� Williams and P�C� Messina� Parallel Computing Works� � �Morgan
Kaufmann Pub�� CA� USA�
�����

���� G�H� Golub and C�F� van Loan� Matrix Computations� �The Johns Hopkins
University Press� MD� USA�
��
��

���� C� Germain� J� Laminie� M� Pallud and D� Etiemble� An HPF Case Study of a
Domain�Decomposition Based Irregular Application� �th Int�l� Conf� on Parallel
Computing Technologies �PaCT����� �Moscow� Russia� September
���� �
�
���

��	� R�v� Hanxleden� Compiler Support for Machine Independent Parallelization of
Irregular Problems� Ph�D� Dissertation� Tech� Rep� CRPC�TR������S � �Rice
University� CRPC� November
�����

�

���� R�v� Hanxleden� K� Kennedy� C� Koelbel� R� Das and J� Saltz� Compiler Analysis
for Irregular Problems in Fortran D� �th Workshop on Languages and Compilers
for Parallel Computers� �New Haven� CT� August
�����

���� S� Hiranandani� K� Kennedy� C� Koelbel� U� Kremer and T� Tseng� Fortran D
Programming System� �th Workshop on Languages and Compilers for Parallel
Computers� �Santa Clara� CA� August
��
��

���� Y�C� Hu� S�L� Johnsson and S��H� Teng� High Performance Fortran for Highly
Irregular Problems� �th ACM SIGPLAN Symp� on Principles and Practice of
Parallel Programming �PPoPP����� �Las Vegas� NV� USA� May
����
�����

��� High Performance Fortran Language Speci�cation� Version ��� High
Performance Fortran Forum� �
��	��

��
� V� Kotylar and K� Pingali� Sparse Code Generation for Imperfectly Nested
Loops with Dependences� ��th ACM Int�l� Conference on Supercomputing �
�Vienna� Austria� July
����
���
���

���� J� M� Ku� The Design of an E�cient and Portable Interface between a
Parallelizing Compiler and its Target Machine�Master�s thesis� �Univ� of Illinois
at Urbana�Champaign� CSRD�
�����

���� V� Kumar� A� Grama� A� Gupta and G� Karipis� Introduction to Parallel
Computing
 Design and Analysis of Algorithms� �The Benjamin�Cummings
Pub�� CA� USA�
�����

���� D�E� Lenoski and W�D� Weber� Scalable Shared�Memory Multiprocessing�
�Morgan Kaufmann Pub�� CA� USA�
�����

���� Y� Lin and D� Padua� On the Automatic Parallelization of Sparse and Irregular
Fortran Programs� �th Workshop on Languages� Compilers and Runtime
Systems for Scalable Computers �LCR��	�� �Pittsburgh� PA� May
�����

��	� P� Mehrotra� J�V� Rosendale and H� Zima� High Performance Fortran� History�
Status and Future� J� Parallel Computing � ��
���� �
���� ��������

���� P� Mehrotra� J� Saltz and R� Voigt� Eds�� Unstructured Scientic Computation
on Scalable Multiprocessors� �The MIT Press� Cambridge� MS� USA�
�����

���� R� Mirchandaney� J� Saltz� R�M� Smith� D�M�� Nicol and K� Crowley� Principles
of Run�Time Support for Paralle Processors� ACM Int�l� Conference on
Supercomputing � �St� Malo� France� July
����
��
���

���� OpenMP� A Proposed Industry Standard API for Shared Memory
Programming� �OpenMP Architecture Review Board� http�
www�openmp�org��
����

��� S� Plimpton� Fast Parallel Algorithms for Short�Range Molecular Dynamics� J�
of Computational Physics� ��� �
����
�
��

��
� Bill Pottenger and Rudolf Eigenmann� Idiom Recognition in the Polaris
Parallelizing Compiler� �th ACM Int�l Conf� on Supercomputing � �Barcelona�
Spain� July
���� ��������

��

���� R� Ponnusamy� Y��S� Hwang� R� Das� J�H� Saltz� A� Choudhary and G�
Fox� Supporting Irregular Distributions Using Data�Parallel Languages� IEEE
Parallel and Distributed Technology � �
�� �Spring
����
�����

���� R� Ponnusamy� J� Saltz and A� Choudhary� Runtime Compilation Techniques
for Data Partitioning and Communication Reuse� IEEE Supercomputing��� �
�November
���� �	
����

���� R� Ponnusamy� J� Saltz� A� Choudhary and G� Fox� Design and Speci�cation
of PARTI Runtime Data Mapping Primitives� Tech� Rep�� �Univ� of Maryland�
Intitute for Advanced Computer Studies� November
�����

���� R� Ponnusamy� J� Saltz� A� Choudhary� S� Hwang and G� Fox� Runtime
Support and Compilation Methods for User�Speci�ed Data Distributions� IEEE
Transactions on Parallel and Distributed Systems� �
�� �August
���� �
��
��
�

��	� L�F� Romero and E�L� Zapata� Data Distributions for Sparse Matrix Vector
Multiplication� J� Parallel Computing � ��
�� �April
���� ����	��

���� M� Raghavachari and A� Rogers� Understanding Language Support for Irregular
Parallelism� Int�l� Workshop on Parallel Symbolic Languages and Systems�
�October
����
���
���

���� IRIS Power Fortran Acelerator� User�s Guide� �Silicon Graphics� Inc�� SGI� Inc�

��	��

���� MIPSpro Automatic Parallelization� �Silicon Graphics� Inc�� SGI� Inc�
�����

��� Special Issue on Irregular Problems in Supercomputing Applications� J� Parallel
and Distributing Computing � �	
���� �January
�����

��
� Special Issue on Languages and Compilers for Parallel Computers� J� Parallel
Computing � ��
���� �March
�����

���� G�P� Trabado� Compilation Support for Parallel Irregular Scienti�c Problems�
Ph�D� Dissertation� �University of M�alaga� Dept� of Computer Architecture�
Spain� December
�����

���� C��W� Tseng� An Optmizing Fortran D Compiler for MIMD Distributed�
Memory Machines� Ph�D� Dissertation� �Rice University� Dept� Computer
Science�
�����

���� J� Touri�no� R� Doallo� R� Asenjo� O� Plata and E�L� Zapata� Analyzing Data
Structures for Parallel Sparse Direct Solvers� Pivoting and Fill�In� �th Workshop
on Compilers for Parallel Computers� �Aachen� Germany� December
��	�
�
�

	��

���� G�P� Trabado� O� Plata and E�L� Zapata� HPF Directives and Run�Time
Support for Molecular Dynamics Problems� �th Workshop on Compilers for
Parallel Computers �CPC��	�� �Link�oping� Sweden� June
�����

�

��	� G�P� Trabado� E�L� Zapata� Exploiting Locality on Parallel Sparse
Matrix Computations� �rd Euromicro Workshop on Parallel and Distributed
Processing � �San Remo� Italy� January
���� ����

���� G�P� Trabado� E�L� Zapata� Data Parallel Language Extensions for Exploiting
Locality in Irregular Problems� Int�l Workshop on Languages and Compilers for
Parallel Computing �LCPC����� �Minnesota� MN� August
���� �
������

���� M� Ujald�on� E�L� Zapata� B�M� Chapman ad H� Zima� Vienna Fortran � HPF
Extensions for Sparse and Irregular Problems and Their Compilation� IEEE
Transactions on Parallel and Distributed Systems� �
�	� �October
����
	��

���

���� E�F� van de Velde� Concurrent Scientic Computing � �Springer�Verlag�
Germany�
�����

�	� D�M� Young� Iterative Solution of Large Linear Systems� �Academic Press� NY�
USA�
��
��

�	
� H� Zima� P�Brezany� B� Chapman� P� Mehrotra and A� Schwald� Vienna Fotran
� A Language Speci�cation� Tech� Rep� ACPC�TR���� � �Austrian Center for
Parallel Computation� University of Vienna�
�����

��

