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Abstract

Most of today’s multiprocessors have a Distributed-
Shared Memory (DSM) organization, which enables scala-
bility while retaining the convenience of the shared-memory
programming paradigm. Data locality is crucial for perfor-
mance in DSM machines, due to the difference in access
times between local and remote memories. In this paper,
we present a compile-time representation that captures the
memory locality exhibited by a program in the form of a
graph known as Locality-Communication Graph (LCG).
In the LCG, each node represents a DO loop nest which
can have at most one level of parallelism. Not all loops need
to be represented within a node and, therefore, the LCG
may contain cycles. Our representation works whether the
loops represented by the nodes are perfectly nested or not,
and the subscript expressions and loop limits can be affine
or non-affine expressions of the loop indices. The LCG
provides essential information that a parallelizing compiler
can use to automatically choose a good iteration/data dis-
tribution and to schedule the communication operations re-
quired during program execution.

1. Introduction

In this paper, we discuss a new compiler internal repre-
sentation of locality in Distributed-Shared Memory (DSM)
multiprocessors. We assume that the program contains a
collection of DO loop nests (henceforth called loop nests
for simplicity) where at most one level of parallelism is
exploited in each nest. IF statements, WHILE loops, DO
loops and other constructs control the execution of the loop
nests. Because access time to remote memories is usually
much higher than to local memories, data locality enhance-
ment is clearly a key issue for performance. By locality en-
hancement we mean selecting an efficient data distribution
in which, whenever possible, the data are placed in the lo-

cal memories of the processors needing them. We reported
earlier some experimental results that clearly show the sig-
nificant impact of locality analysis on the efficiency of au-
tomatic parallelization [10]. Although, there have been sev-
eral research projects on locality enhancement for DSMs, as
discussed below, there is still room for much improvement
and, for that reason, we decided to initiate this study, the
first results of which are reported in this paper.

As part of this project, we have developed techniques
to schedule parallel iterations and distribute the shared ar-
rays across the local memories to minimize the parallel ex-
ecution overhead resulting from load unbalance and com-
munications. When remote accesses are unavoidable, our
techniques can identify them to estimate execution costs
and generate communication primitives. Our techniques are
based on the Linear Memory Access Descriptor (LMAD)
introduced in [9] which can be accurately computed in
relatively complex situations, such as array reshaping re-
sulting from subroutine calls and non-affine expressions in
subindex expressions and loop bounds. One advantage of
LMADs is that they can be computed inter-procedurally
by applying essentially the same approach used to compute
their values intra-procedurally.

Our technique uses a Locality-Communication Graph
(LCG) that reflects the locality and communication patterns
of a parallel program. The program is divided into phases,
each being a DO loop nest with at most one parallel loop.
These loop nests do not have to be perfectly nested. The
LCG contains a directed, connected graph for each array
in the program. Each node in these graphs corresponds to
a phase accessing the array represented by the graph. No-
tice that these phases do not have to include outermost DO
loops. That is, the phases could be inside one or more DO
loops. The nodes are connected according to the program
control flow. The connected graphs are not necessarily trees
because not all loops are part of a phase. TheLCG supports
all the functions of our technique, including program opti-
mization and automatic generation of communication oper-
ations.



There are a variety of approaches to automatically solve
the iteration/data distribution problem [4], [5], [3], [6], [1].
However, as mentioned above, we believe that they suf-
fer limitations that should be resolved, if possible. With
these approaches, the array dimensions must be static and
known at compile time, and array reshaping, therefore, is
not addressed. In addition, these approaches require that the
loops be perfectly nested and that the subscript expressions
and loop limits be affine expressions of the loop indices.
Furthermore, they do not satisfactorily solve the BLOCK-
CYCLIC distribution and do not consider the reverse distri-
bution case. In contrast, as mentioned above, our techniques
can handle array reshaping and, as a result, can be directly
applied inter-procedurally. Our techniques can handle non-
affine access functions and can compute BLOCK-CYCLIC
distributions, the most general type of distributions among
those commonly used today. And our approach covers the
reverse distribution as well.

The organization of the paper is as follows. In Section
2, we describe the main concepts in our model: the ar-
ray reference descriptor, the phase descriptor, and some
operations to simplify their representation. Section 3 intro-
duces iteration descriptors, which describes the memory re-
gion accessed by a parallel loop iteration. In Section 4, we
address the locality analysis (intra-phase and inter-phase
localities) that generates the annotated LCG to reflect the
memory locality that can be exploited in the code. In addi-
tion, we present two applications of the LCG. Due to space
limitations, we have omitted formal proofs, but the theo-
rems and statements are quite simple and we expect that the
reader will have no difficulty believing their correctness.

2. Array reference descriptor and phase de-
scriptor

To generate descriptors of memory access patterns we
assume that loops have been normalized and that all arrays
have been converted into one-dimensional arrays as tradi-
tionally done by conventional compilers.

The array reference descriptor (ARD) of the s-th refer-
ence to array X in phase Fk is defined as: Ak

s �X���k� ��
���s� ��s� ��s� �s

�
�. Here, ��k is the vector of indices of the

loop nest Fk . There is one (and only one) element in ARD
vectors ��s, ��s, and ��s for each loop index from the nest.
Let us assume that the subscript expression of the sth ref-
erence to X is �s. Element j of ��s contains the absolute
value of the stride of �s for ik�j�, the jth loop index in loop
nest Fk. This stride is the difference between the values �s
obtained by evaluating it at two consecutive values of ik�j�.
The jth element of ��s is 1 if the jth stride is positive and -1
otherwise. The jth element of ��s is the difference between
the values of �s with ik�j� evaluated at the limits of the jth

loop divided by the jth element of the stride. The value of
vector ��s multiplied element-by-element by the stride is the
span defined in [9].

For example, consider the two references to X shown in
Figure 1 containing a loop nest of TFFT2 from the NASA
benchmarks. The P � �p and Q � �q input parameters are
constant. Initially, we do not take into account the different
kinds of accesses (read/write). Therefore, for this loop nest,
there are two non-affine subscript expressions: �� � �� �
P � I � �L�� � J �K� and �� � �� � P � I � �L�� � J �
K � P���. In addition, in this example, the upper bound
of J loop and the upper bound of the K loop are non-affine
expressions dependent on the L index. The ARDs for the
two X references are shown in Figure 2.

1. F�: doall I � � to Q� �
2. do L � � to p
3. do J � � to P � ��L � �

4. do K � � to �L�� � �

5. � � � X�� � P � I � �L�� � J �K� � � �

6. � � � X�� � P � I � �L�� � J �K � P��� � � �

7.
...

8. enddo
9. enddo
10. enddo
11. enddo

Figure 1. X in phase F� of TFFT2

The ARD A�
��X����� from Figure 2 contains three vec-

tors and one scalar: ��� � �Q� �P � �� � ��L � �� P �

��L� �L��� containing the span divided by the stride for
each loop index. The vector �� � �� � P� J � �L��� �L��� ��
contains the stride for each loop index of ��. The vector
�� � ��� �� �� �� contains the stride signs. Finally, �� � � is
the offset of the �� access function with respect to the basis
position in the X array (which is 0).

Once we have obtained the ARDs for array X in
a phase, say Fk, a phase descriptor (PD) represent-
ing all the elements of X accessed by a phase can be
computed. The general form of a phase descriptor is
Pk�X� i� �

S
j���mA

k
j �X���k� � Ak

��X���k��A
k
��X���k��

	 	 	Ak
m�X���k�. This PD has the form �Pk�X���k� ��

�A������ ��
�
� and represents m � � of the occurrences of

X within the phase. A, and � are matrices of dimension m
� n which represent the spans divided by strides, and the
stride signs, respectively. The vector �� represents the vector
of all possible strides for all levels of nesting and all occur-
rences ofX . The value n is the dimension of vector ��. Each
row of the matrices represents the �� and �� vectors, respec-
tively, for each occurrence of X represented by Ak

j . The
vector �� contains the offset for each occurrence. In the rest
of the paper, for the sake of simplicity, we will assume that
all the strides have a positive sign so that we can avoid the
matrix �. For the code example in Figure 1, the resultant
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Figure 2. ARDs for X in phase F� of TFFT2

PD for the array X is shown in Figure 3(a). In the PD for
an array X , the stride vector �� contains some strides associ-
ated with the parallel loop and some other strides associated
with the sequential ones. Recall that each phase contains at
most one parallel loop. For example, in Figure 3(a) the first
component of stride vector �� � � �P is associated with the
doall loop. The remaining components of the stride vector,
which are associated with the sequential loops, appear in
loop order: (�� � J � �L��� �� � �L��� �	 � �).

2.1. Phase descriptor transformations

A PD can be simplified by applying transformations such
as stride coalescing and access descriptor union. As men-
tioned above, a program is represented here by a collection
of control flow graphs, one for each array in the program.
The nodes of these graphs correspond to DO loop nests con-
taining accesses to the array associated with the control flow
graph. The access representation of array X can be further
improved by avoiding the redundancies that may arise be-
tween PDs corresponding to different phases. In order to
accomplish this task, we also need to carry out other sim-
plification operations: descriptors homogenization and off-
set adjustment operations. All these operations are briefly
described next. Detailed descriptions can be found in [7].

An element of the stride vector �� may be safely deleted
when it is a multiple of another and the span correspond-
ing to the former is greater than the span of the latter. Our
goal in the stride coalescing operation is to reduce the num-
ber of indices involved in the PD. Given a PD for an array

X , Pk�X���k� �
�
�A���� ��

�
�, the stride coalescing opera-

tion removes redundant stride columns [7] from �� and the
corresponding columns from matrix A without losing the
access information. The basis of the stride coalescing oper-
ation was introduced in [9].

An important case arises when the access functions are
non-linear and/or the loop bounds are non-constant: the
PDs are non-constant. This means that either some coef-
ficients �ij from matrix A or some �j from �� are a function
of the index loop variables. For example, consider the loop
nest descriptor in Figure 3(a), which is expressed in terms
of the loop indices L and J . The element �� is a multiple
of element �	. Therefore, we can remove �� and the third

column ofA. However, this implies updating the fourth col-
umn of A. Figure 3(b) shows the new phase descriptor that
results from the application of coalescing. In this PD, ele-
ment �� is again redundant with respect to �	. By applying
the coalescing algorithm again, we get the final PD, which
is shown in Figure 3(c).

In some cases, it may be possible to find for two ARDs a
PD representation containing a single Ak

j term due to mis-
alignments in the access functions. For example, this is the
case when two ARDs describe the same access pattern but
one of the regions they represent is shifted relative to the
other (we say two ARDs have the same access pattern when
they have a similar [7] size vector, ��, and the same stride
vector, ��). The ARDs of these access functions can be ag-
gregated in such a way that they can be represented as a sin-
gle row within a PD. This single row represents the union
of the two ARDs. This is the goal of the access descriptor
union operation. For example, applying access descriptors
union to A�

��X����� and A�
��X����� ARDs from Figure 3(c)

produces the PD shown in Figure 3(d).
There are several cases in which two PDs describe the

same access pattern, but one of the regions is shifted with
respect to the other. Since we are interested in the whole
region of an array X accessed with the same access pat-
terns, we can aggregate both PDs into one which represents
the union of such regions. In order to do this, we apply
a union operation similar to the one described above for
ARDs. Both PDs are replaced by the result of the union
operation. This is the descriptor homogenization operation.

The goal of the offset adjustment operation is to express
the region accessed for each PD with respect to �min, which
is the base position for array X . If the PD of Fk does not
contain the minimum offset, we rewrite the smaller offset
of that nest (�k� ) in terms of �min. For this, we define the

adjust distance operation, Rk, as Rk �
j
�k
�
��min

�k
�

k
.

3. Iteration descriptor

Consider a loop nest with a single parallel loop. To de-
scribe the elements of array X accessed by one iteration,
say i, of the parallel loop in phase Fk , we use the iter-
ation descriptor (ID) whose general form is Ik�X� i� �S
j���m I

k
j �X� i� � Ik� �X� i� � I

k
� �X� i� � 	 	 	 Ikm�X� i�,
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Figure 3. (a) PD of X in F�; (b) after removing ��; (c) after removing ��; (d) after the access descriptor union
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Figure 4. IDs for X associated with parallel iterations i=0, i=1 and i=2 of F�

where Ik�X� i� �
��B���B � ��B�i�� �	

��. The ID represents

a super-set of all elements of array X accessed in such a
parallel iteration. A simple way to compute an ID is to ma-
nipulate the corresponding PD as follows: B is computed
from A by removing the sizes associated with the parallel
loop; ��B represents the stride associated with the sequen-
tial loops, and ��B�i� is the extended offset vector. ��B�i�
contains, for j � � 
 m, �B�j� i� � �j � i � �P �j�, where
�P �j� is the stride associated with the parallel loop of the
jth occurrence. �B�j� i� points to the first memory position
of the sub-region accessed by the �j���k� access function in
the i-th iteration of the parallel loop. �	 is originally a null
vector that will be computed next. Figure 4 (with �	 omit-
ted) shows a graphic representation of the IDs associated
with each iteration of the parallel loop of F� for the array
X of the TFFT2 example of Figure 2 when Q � � and
P � �. The shaded memory positions of X represent the
data sub-regions described by each I��X� i�. The �	 com-
ponent of each ID term can be used to take advantage of
storage symmetry. It is used to represent as a single term
several Ikj �X� i� terms from the original form of the ID.
For each type of storage symmetry we define a distance: a)
Shifted storage: With a shifted storage distance, two array
sub-regions with the same access pattern but shifted can be
represented by a single ID term. In this situation, we de-
fine the shifted storage distance, 	d; b) Reverse storage:
this represents two array sub-regions that are accessed with
a reverse access pattern (this means that one access func-
tion is increasing and the other is decreasing with respect to
the parallel loop index). In this case, we define the reverse
storage distance 	r; c) Overlapping storage: this repre-
sents two array sub-regions which are partially overlapped.
In this case, we calculate the overlapping distance, 	s. In
Figure 5, we show some examples of storage symmetry and
their corresponding IDs and distances. The three kinds of
storage symmetry we have just defined are not exclusive to

each other, and they can appear at the same phase descrip-
tor.

4. Memory access locality analysis

In developing our analysis and transformation algo-
rithms, we have assumed: i) The total number of processors,
H , to be involved in the execution of the program is known
at compile time; and ii) The iterations of each parallel loops
are statically distributed between theH processors involved
in the execution of the code following a BLOCK-CYCLIC
pattern.

The first part of the algorithm is to identify when it is
possible to distribute iterations and data in such a way that
all accesses to an array X are to local memory. We call this
part of the algorithm memory access locality analysis. Ob-
viously, is not always possible to find a static iteration/data
distribution such that all accesses required by a given pro-
cessor are local. In such cases, a remote access (communi-
cation) to the memory of the processor owning the required
data is necessary. Actually, the communication operation
is implemented in our model via a put [2] operation. This
operation is an example of what is known as single-sided
communication primitives. In our approach, the data dis-
tribution may change dynamically from phase to phase. In
fact, with our locality analysis framework, it is possible to
identify sets of consecutive phases that cover the same data
sub-region of an array X for a number of parallel iterations
scheduled on each phase. For this set of phases, we can se-
lect a static data distribution for X such that all accesses to
this array are going to be local.

In this Section, we analyze the conditions that must hold
to ensure the memory access locality for each phase (intra-
phase locality) and between phases (inter-phase locality).
The goal of this analysis is to compute the LCG. We assign
an attribute to each node of the LCG identifying the type
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Figure 5. (a) Shifted st. 	d � ��; (b) Reverse st. 	r � ��; (c) Overlapping st. 	s � �

of memory access for that array in the corresponding phase.
When the memory access for an array X in a phase is write
only, the associated node in the X graph is marked with
the attribute W; when the memory access is read only, the
attribute is R; and, finally, for read and write accesses, the
attribute is R/W. A special case arises when array X is pri-
vatizable in a phase (we restrict the definition of privatizable
array given in [10] because we consider the value of X is
not lived after the execution of Fk): the corresponding node
is marked with attribute P. Figure 6 shows the LCG for
a fragment of our motivating TFFT2 example. This LCF
comprises two graphs: one for array X and one for array
Y . Each graph contains 8 nodes (phases). As noted ear-
lier, the nodes are labeled with an access attribute: W, R, P,
and R/W. On each graph, the edges connecting nodes are
also annotated with additional labels: L, which means that
is possible to exploit memory access locality between the
connected nodes, and C, which means that it is not possi-
ble to assure memory access locality. This C label stands
for ”communication”, because the lack of memory access
locality implies non-local accesses or, in other words, the
necessity of communication between processors. In these
cases, the communication operations will be placed just af-
ter the execution of the source connected phase and before
the execution of the drain connected phase. The locality la-
bels, L and C, will be determined at the end of the locality
analysis.
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Figure 6. LCG for a TFFT2 code section

4.1. Intra-phase locality

Let Ik�X� i� be the ID for array X in the i-th parallel
iteration of phase Fk. Let us assume that this i-th iteration
is scheduled in the processor PE. We say that all accesses
to X are local to processor PE if the region described by
Ik�X� i� belongs to processor PE. From here, we propose
an intuitive idea.

Theorem 1. Let us suppose that the i-th parallel iteration
of phase Fk is scheduled in processor PE. The sufficient
condition to ensure that all accesses to array X in phase Fk
are local to processor PE (intra-phase locality) is that this
processor local memory holds Ik�X� i� and a)X is privatiz-
able, or b)X is non-privatizable and there is not overlapping
storage for arrayX in phase Fk, or c)X is non-privatizable,
there is overlapping storage for X in Fk and accesses to ar-
ray X in that phase are only reads. �

Theorem 1 sets three different situations:
a) Array X is privatizable. If the local memory of each

processor contains a copy of the region of the privatizable
array X accessed in the corresponding parallel iteration
(which is described in Ik�X� i�), we can guarantee that all
accesses to X in the phase Fk are local, as we show in Fig-
ure 7(a) for array Y . Array replication is a particular case
of this situation.

b) Array X is non-privatizable and there is not overlap-
ping storage for array X in phase Fk (� 	s). In this case,
when the local memory of processor PE (which executes
the i-th parallel iteration of phase Fk) contains the region
described in Ik�X� i�, all the access functions in this phase
only generate local accesses to the memory of processor
PE, as we see in Figure 7(b) for array Y .

c) Array X is non-privatizable and there is overlapping
storage for X in Fk (� 	s), then Ik�X� i� contains overlap
sub-regions that are replicated in other processor memories.
This is shown in Figure 7(c). In this case, when accesses
are reads only, it is not necessary to update the replicated
sub-regions (overlap sub-regions). Therefore, no communi-
cations will be necessary, and all accesses will be local to
the memory of processor PE.
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Figure 7. (a) Y is priv.; (b) Y is non-priv. and non-overlap.; (c) X is non-priv., overlap. and is only-read

Theorem 1 can be extended for a collection of parallel
iterations. Then, for each parallel iteration scheduled in
a processor the corresponding ID must be allocated in the
processor local memory.

4.2. Inter-phase locality

Once we have established the intra-phase locality condi-
tion in a phase (which implies there will be no communica-
tion operations in the execution of that phase), the next step
is to extend the locality analysis and to determine when two
phases Fk and Fg (k 
 g) access the same local region of
X , so as to avoid communication operations between the
execution of these phases (inter-phase locality).

There are two concepts that help us to relate the sub-
region accessed by a number of parallel iterations to those
parallel iterations: the upper limit and the memory gap
[7]. The upper limit of array X for a parallel iteration i,
UL�Ik�X� i��, represents the farthest memory position of
the sub-region described by the ID of X in the i-th itera-
tion of the parallel loop of phase Fk. In general, the upper
limit of array X for a chunk of p parallel iterations, starting
in the iteration i, UL�Ik�X� i�� p�, represents the farthest
memory position of all the sub-regions described by the IDs
of X from the ith to the �i� p� ��th iterations of the par-
allel loop. There may be phases in the program in which
the sequential loops do not access all the memory positions
between two consecutive parallel iterations. In other words,
there could be memory gaps between the farthest memory
position of the sub-region associated with the ID of the i-th
parallel iteration and the lower memory position of the next
sub-region (associated with the ID of the (i+1)-th parallel
iteration). To cover these cases, we define the memory gap,
hk, of array X in phase Fk. Figure 8 shows the upper limit
of each ID for the parallel iterations i � �, i � � and i � �
of F� and the memory gap for the array X in the TFFT2
example of Figure 4.

Let Ik�X� i� and Ig�X� i�� be the IDs of X for i and i�

parallel iterations in phases Fk and Fg (g � k). Let hk and
hg be the memory gap of X in each of these phases. We
define the balanced locality condition for array X as:

UL�Ik�X� i�� pk� � hk � UL�Ig�X� i��� pg� � hg (1)

� � pk �



uk� � �

H

�
(2)

� � pg �



ug� � �

H

�
(3)

where uk� and ug� represent the upper bounds of the par-
allel loops in phases Fk and Fg . � � i � pk � � � uk�
and � � i� � pg � � � ug�. Equation 1 determines the
number of consecutive parallel iterations (pk, pg) that needs
to be scheduled in each phase in order to ensure that the
sub-region they describe is the same. Therefore, if these
iterations are scheduled in processor PE, the accesses to
this region are local when the region is stored in the PE
local memory. That is, in processor PE � � will be sched-
uled i � � 
 pk � � of Fk and i� � � 
 pg � � of Fg ;
In PE � � will be scheduled i � pk 
 � � pk � � of
Fk and i� � pg 
 � � pg � � of Fg , and so on follow-
ing a CYCLIC(pk) and CYCLIC(pg) (BLOCK-CYCLIC)
scheduling of the parallel iterations. Equations 2 and 3
limit the maximum number of parallel iterations that can
be scheduled in a processor for phases Fk and Fg , thereby
taking care of the load balance. By solving the system of
Equations 1-3, we get the unknowns pk and pg, which give
us the size of the chunk in the BLOCK-CYCLIC distribu-
tions as we describe in [7].

Theorem 2. To ensure that all accesses to arrayX in phases
Fk and Fg are carried out without communication opera-
tions between the execution of these phases (inter-phase
locality) one of these conditions suffices: 1) X is non-
privatizable in phases Fk and Fg , and the intra-phase lo-
cality condition is fulfilled in phase Fk, and the balanced
locality condition holds; 2) X is privatizable in phase Fk
(Fg), and the intra-phase locality condition is fulfilled in
phase Fg (Fk); 3) X is privatizable in phases Fk and Fg . �
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Figure 8. Symbol ● represents the upper limit of each I��X� i�; h� � � is the memory gap

Theorem 2 is based on Theorem 1 which establishes the
conditions to avoid communications within a phase. Three
situations may arise when we analyze the transition between
the intra-phase locality condition in phase Fk and the intra-
phase locality condition in phase Fg :

1. Array X is non-privatizable in phases Fk and Fg , and
the intra-phase locality condition is fulfilled in phase Fk .
There will be communication operations for array X be-
tween the execution of these phases if the balanced locality
condition does not hold. For example, the balanced local-
ity condition for array X in phases F� and F� of TFFT2 is
expressed as:

p� � � �Q � P � P � � � P � p� (4)

� � p� �



P

H

�
(5)

� � p� �



Q

H

�
(6)

The integer solution that verifies Equation 4 is p� � P ,
p� � Q. However, this solution does not verify Equations 5
and 6. This fact points out that all accesses to X in phases
F� and F� are local if the processor PE executes all iter-
ations of phases F� and F�. That is, F� and F� would be
executed sequentially, and the local memory of PE should
store the whole array to avoid communication operations.
Actually, this means that there will be communication op-
erations if we do not take into account the sequential execu-
tion possibility.

On the contrary, let us analyze the balanced locality con-
dition for non-privatizable array X in phases F� and F	 of

TFFT2, which is in Figure 9(c). In this case, we get
l
Q
H

m

integer solutions, which verifies the balanced locality con-
dition. Suppose that we select as a solution for the balanced
locality condition p� � p	 � �. Figure 9(a)(b) shows the
IDs associated with p� � p	 � � for processor PE � �.
We can see that the covered data region is the same in the
two phases and that the intra-phase locality condition is ful-
filled in phase Fg for pg � �. As a result, all accesses to X
in F� and F	 are local.

2. Array X is privatizable in phase Fk (Fg). By defini-
tion the value of X in Fg (Fk) does not depend on the value
of X in phase Fk (Fg). In these cases, the intra-phase lo-
cality condition (Theorem 1) holds in the phase where array
X is privatizable. For the other phase, if the intra-phase lo-
cality condition is fulfilled, we are assured that, in Fk and
Fg , all accesses to X are local and that they do not generate

any communication operations. Here, we say that phases
Fk and Fg are un-coupled.

3. Array X is privatizable in phases Fk and Fg . Again,
these two phases are un-coupled.

Table 1. Classification of labels for edges in aLCG

Fk � Fg Overl. (�
s) Non overl. (�
s)
Bal. loc. Non-bal. loc. Bal. loc. Non-bal. loc.

R�R L C L C
R �W L C L C

R � R�W L C L C
R � P D D D D
W � R C C L C
W �W C C L C

W � R�W C C L C
W � P C C D D

R�W � R L C L C
R�W �W L C L C

R�W �R�W L C L C
R�W � P D D D D
P �W D D D D

P � R�W D D D D
P � P D D D D

Table 1 summarizes all possible cases in a LCG when
Theorem 2 is applied. In the first column of the table, we
show all the possible attribute combinations between the
two nodes for which we are analyzing the inter-phase lo-
cality. Bear in mind that by using memory access locality
analysis we aim to find out how to label the edges in the
LCG. We have divided the table columns into two major
parts to show whether there is parallel iteration overlapping
in phase Fk (� 	s). Each major column, is sub-divided
into two additional ones, to show whether there is verifica-
tion of the balanced locality condition in phases Fk and Fg .
By applying Theorem 2, the edges will be labeled with C if
there are communication operations between the execution
of the two connected phases, or with L if it is possible to
avoid communications by exploiting locality (i.e., Theorem
2 holds). In Table 1, for the labels set to L we assume that
the intra-phase locality condition of phase Fk holds. We
use the label D to annotate those edges that bind two un-
coupled phases. For example, to build the LCG of TFFT2,
shown in Figure 6, we just needed to apply the 4-th and 5-th
columns of Table 1 because there is not overlapping stor-
age in any phase (i.e., � 	s). For array Y , phases (F�, F�),
(F�, F	) and (F�, F�), (F�, F
), are un-coupled; thus, the
corresponding edges (the dashed edges in Figure 6) are first
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Figure 9. (a) I��X��� is shaded; (b) I��X��� is shaded; (c) the balanced locality condition

marked with D, and later removed.

4.3. Locality analysis applications

Once the LCG has been built, we can use it for at least
two applications: (a) implementing an integer programming
model to find out the iteration/data distribution that mini-
mizes the parallel execution overhead; and (b) generating
the communication routines between the phases that have
been marked with label C.

a) The set of nodes of a LCG that are connected consec-
utively with L edges covers a common data sub-region of
array X ; we call this a chain of nodes. There can be more
than one chain for an array, and each column of the LCG
has at least one chain. In the LCG, the chains of array X
are separated by C edges. The nodes of the chains define the
constraints of our integer programming model. Those nodes
(k�g) of the LCG connected with C represent a redistribu-
tion (Global communications) or an updating of overlapped
subregions (Frontier communications), which are the com-
munication patterns that our approach can handle. These
nodes take part in the definition of the objective function
(where Ckg�X� pk� is the communications cost function)
because communications are one of the overhead sources.
The other overhead source is the accumulation of the par-
allel load unbalance assigned to processors in each phase
(whereDk�X� pk� is the load unbalance cost function). Due
to space limitations, we leave the full description in [8],
where we present and validate by measurements the cost
functions. Table 2 illustrates all the constraints for theLCG
of the TFFT2 code example (Figure 6). The objective func-
tion that models the parallel overhead is shown in Equation
7, where Xj represents one of the two arrays of the pro-
gram.

o�f� � Min

��
�
X
j����

X
k����

Dk�Xj � pk� � Ckg�Xj � pk�

�

	 (7)

The solution to this problem allows us to find pk. As a
reminder, this is the size of the chunk of parallel iterations
scheduled in each node (phase), following a CYCLIC(pk)
scheme. Once the iteration distribution of a node has been
selected, we can compute the data distribution for each ar-
ray of that node. To do this, the data distribution function

must hold the intra-phase locality requirements imposed by
the IDs associated with the chunks of parallel iterations
scheduled in each processor. However, it is possible to find
a global data distribution for all the nodes of the chain such
that all the accesses to X in any of the connected nodes of
the chain are in the local memory of the processors. The rea-
son is that all nodes belonging to the same chain cover the
same data region of array X (inter-phase locality). Thus,
the data allocation procedure of array X only takes place
before the first node of the chain. Therefore, for each ar-
ray X in the LCG, after the execution of the last phase of
a chain, and before the execution of the first phase of the
next chain, a data allocation procedure (redistribution) must
re-allocate the data of X . We describe this procedure in [8].

b) In [8] we also outline, how to automatically generate
the communication routines for array X when there is a C
edge connecting two nodes in a LCG. In the communi-
cations routines generation we take into account two com-
munications patterns: the Frontier Communications and the
Global Communications. In addition, message aggregation
is performed in our approach.

Some experiments were conducted in [10] and [7] to
probe the effectiveness of the iteration/data distributions
and communication generation obtained with our approach
for a set of six real codes. The parallelization procedure is
as follows. First, the Polaris parallelizer marked the parallel
loops of each code. Then, the LCG of each code was built,
and the integer programming problem of each code was de-
rived. Here we used GAMS to obtain the iteration/data distri-
butions of each phase; the solutions of the integer program-
ming problems were obtained in few seconds in a R1000.
Finally, those distributions were hand-coded for each pro-
gram, including the communications generation when nec-
essary. These parallel codes were executed in a Cray T3D.
We achieved parallel efficiencies of over 70% in the Cray
for 64 processors.

5. Conclusions

We have shown a compile-time representation that han-
dles array reshaping, non-affine access functions and non-
perfectly nested loops, that is suitable for general inter-



Table 2. Constraints for TFFT2 code

X Y

Locality const.
p�� � p��

P � p�� � Q � p�� p�� � p��

p�� � p�� � �Q � p�� � p��

p�� � Q � p��

P � p�� � Q � p��

� �Q � p�� � p��

Load bal. const.
� � p��� p�� �

�
P �Q

H



� � p��� p�� �

�
Q

H




� � p��� p��� p��� p�� �

�
P

H



� � p��� p�� �

�
P �Q

H



� � p��� p�� �

�
Q

H




� � p��� p��� p��� p�� �

�
P

H




Storage const.

p�� �H � ���

d
� P �Q

p�� �H �
���
r ���

�
�

P �Q

�

p�� �H �
���
r ���

�
�

� � P �Q

�

p�� �H � ���

d
� P �Q

Q � p�� �H � ���

d
� P �Q

p�� �H � ���

d
� P �Q

p�� �H �
���
r ���

�
�

P �Q

�

p�� �H �
���
r ���

�
�

� � P �Q

�

Affinity const.
p�� � p�� p�� � p�� p�� � p�� p�� � p��

p�� � p�� p�� � p�� p�� � p�� p�� � p��

procedural analysis. Using this representation, we build
the LCG graph to capture the memory locality exhibited
by a program (intra-phase locality and inter-phase local-
ity). The LCG graph summarizes the phases of the pro-
gram for which all accesses can be local or communication
operations are required. This graph is a powerful tool that
can be easily handled by the compiler in later optimization
stages: iteration partition, data distribution, array replica-
tion, and communication scheduling. The framework com-
prising these last steps is presented in [7], where an integer
programming problem results in the iterations/data distribu-
tions (including array replication) that minimize the number
of remote accesses while keeping a good load balance for all
the parallel loops in the code. Experimental results support
the effectiveness of the data distributions and the control
of communication operations derived with our approach for
the set of tested programs.
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