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Abstract

Automatic parallelization of codes with complex data struc�
tures is becoming very important� These complex� and of�
ten� recursive data structures are widely used in scienti�c
computing� Shape analysis is one of the key steps in the
automatic parallelization of such codes� In this paper we
extend the Static Shape Graph �SSG� method to enable the
successful and accurate detection of complex doubly linked
structures� In addition� these techniques have been imple�
mented in a compiler� which has been validated for several
C codes� In particular� we present the results the compiler
achieves for the C sparse LU factorization algorithm� The
output SSG for this case study perfectly describes the com�
plex data structure used during the LU code�

� Introduction

Regarding high performance computing� it is clear that com�
pilers represent a key tool that should take care of optimizing
the applications that must be executed e�ciently in paral�
lel computers� A good deal of work has been done in the
area of array dependence analysis ��	 with notable success�
However� non�numerical and numerical applications based
on complex and dynamic data structures are becoming more
and more widely used lately� These complex� and often� re�
cursive data structures are based on dynamic allocation and
references�

To successfully optimize these applications� a fundamen�
tal compiler task is the analysis of dynamic structures which
are generated at execution time� Parallelization of any ap�
plication requires the compiler
s special knowledge about the
underlying semantic of the data structure� With these as�
sumptions� shape analysis becomes a �rst step in the data
dependence test for such kinds of codes� The aim of this
phase is to �nd out at compile time the shape of the heap�

In this work we present some important modi�cations to
the shape analysis method developed by Sagiv et al� ���	� In
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addition� we check our improvements with a real numerical
application like the non�symmetric sparse LU decomposition
based on a one�dimensional doubly linked list�

The organization of the paper follows� In the next section
we revise the approaches currently available to solve shape
analysis problems� Section three presents the motivating
example� Our shape analysis techniques are presented in
section four� Conclusions and future work close the paper�

� Related Work

There are several methods addressing the shape analysis
problem� Some of these are based on explicit annotations�
as in Hummel et al� ��	� These methods are based on pro�
grammer annotations describing the data structure�

Other approximations are based on access paths� Hen�
dren et al� �	 use �path matrix analysis� that contains
�access paths� between pointers� Matsumoto et al� ���	
use �normalized� path expressions to maintain the �alias�
pair� between pointers� These methods cannot handle cyclic
structures like double linked lists and trees with parent point�
ers�

Finally� there are methods based on graphs� In the graph�
the nodes represent �storage chunks�� and the edges refer�
ences between them�

One of the �rst relevant works on this topic was devel�
oped by Jones et al� ��	� In this work� the authors focus on
the shape analysis of programs with destructive updating�
They bind� to each program point� a set of graphs which
describe all potential alias relationships that can arise at
execution time� In addition� they use a �k�limited� approx�
imation in which all nodes beyond a k selectors path are
joined in a summary node� Horwitz et al� ��	 presented an�
other variation on k�limited graphs� called �storage graphs��
Also� the authors maintain a set of storage graphs at each
program point� The main drawbacks of these methods are�
��� the number of shape graphs that can arise for each pro�
gram point is very high� leading to a great deal of compu�
tational and memory overhead� and ��� the node analysis
beyond the �k�limit� is very inexact�

On the other hand� there are approximations in which
each program point has an associated graph which covers
all possible shape graphs combinations� instead of all these
possible graphs independently ��� �� ��� ��	�� The result of
joining all the information� previously represented by di�er�
ent shape graphs� in a single one� is a lack of accuracy in the
representation� but on the other hand� it leads to a practical
shape analysis algorithm� Larus et al� ��	� use a variation
of �k�limited� graphs called �alias graphs�� and introduce



summary nodes using �s�l limiting�� This method works
well only for simple data structures like trees and lists� It
is expensive by its complex meet� node summary and node
labeling operations�

The algorithm presented by Chase et al� ��	 is not �k�
limited�� Their abstraction �Storage Shape Graph� contains
one node for each variable and one for each allocation site in
the program� In this method� the count of references from
the heap to this node ��� �� inf�� is stored for each node
in the graph� This way� the k�limited drawback is avoided�
This algorithm is able to detect a single linked list even when
new elements are appended to the end of the list� However�
it is not powerful enough to detect insertions of elements in
the middle of the list�

Plevyak et al����	 work is based on the Chase
s method�
They extend the previous �Storage Shape Graph� into the
�Abstract Storage Graph� �ASG� in order to solve the main
problems arising in the �rst one� However� in the same way
as Chase
s method� their comparison and compression oper�
ations are complex and expensive�

The method presented by Sagiv et al� ���	 is based on
what they call �Static Shape Graphs� �SSG�� The main dif�
ference between this method and previous ones lie in the
node�name scheme they use for the nodes� Their graph con�
tains nodes only for heap locations pointed to by program
variables� Some very interesting properties are� ��� alias
relationships are easier to �nd�� ��� the determinism is bet�
ter preserved in the graph due to they always carry out a
�strong nulli�cation� equivalent to �strong update� �substi�
tution of a reference by another one� without keeping the
previous one��

SSG the union and comparison operations are very sim�
ple due to this node�naming scheme�

However this method cannot analyze doubly linked struc�
tures which are widely used in C codes� like Sparse LU fac�
torization� In this case the SSG is not able to accurately
represent the data structure of the Sparse LU factorization�
Each column of the sparse matrix is represented by a dou�
bly linked list� In addition� a di�erent doubly linked list is
needed to point to the �rst element of each list �column��

We propose combining the Sagiv
s method ���	 and the
Abstract Storage Graph �ASG� proposed by Plevyak et al�
���	 to achieve a more precise shape analysis of this type of
structures which will allow us to automatically paralleliza�
tion of C codes with complex data structures� The extended
SSG proposed in this work introduces two main modi�ca�
tions�

� There will be several summary nodes in the SSG� al�
lowing us to summarize di�erent structure and type
elements into di�erent summary nodes� each one with
its own properties�

� The �shared� attribute is assigned to each selector and
to pairs of selectors in cycle links� With this modi�ca�
tion we achieve a more accurate representation of the
doubly linked structures�

� Motivating example� sparse LU factorization

The kernel of many computer�assisted scienti�c applications
is to solve large sparse linear systems� We �nd examples
of these kinds of applications in optimization problems� lin�
ear programming� simulation� circuit analysis� �uid dynamic
computation� and numeric solutions of di�erential equations
in general�

do k � �
 n
Find pivot�Akj

if �j �� k�
swap A��  n�k� and A��  n� j�

endif

A�k� �  n�k� � A�k � �  n�k��A�k�k�
do j � k � �
 n

do i � k � �
 n
A�i� j� � A�i� j��A�i� k�A�k� j�

enddo

enddo

enddo

Figure �� LU algorithm �General approach� right�looking
version�
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Figure �� �a� Sparse matrix� �b� LLCS data structure�

Furthermore� this problem presents a good case study
and is a representative computational code for many other
irregular problems� Actually� this problem represents those
in which the computational load grows with the execution
time ��ll�in� and matrix coe�cients change their coordinates
due to row�column permutations �pivoting��

More precisely� our working example application solves
non�symmetric sparse linear systems by applying the LU fac�
torization of the sparse matrix� computed by using a general
method ��� �	� These methods directly solve the sparse prob�
lem and share the same loop structure of the corresponding
dense code �the one we see in Fig� ���

In this Fig� �� we show an in�place code for the direct
right�looking LU algorithm� where an n�by�n matrix A is
factorized� The code includes a row pivoting operation �par�
tial pivoting� to provide numerical stability and preserve
sparsity�

Usually� in order to save both memory and computation
overhead� zero entries of sparse matrices are not explicitly
stored� A wide range of methods for storing the nonzero
entries of sparse matrices have been developed ��	� Here� we
will consider only linked list data structures�

The partial�pivoting LU decomposition stores the coef�
�cient matrix in a one�dimensional doubly linked list �see
Fig� � �b��� to facilitate the insertion of new entries and to
allow column permutations�

Analyzing the sparse LU algorithm with Sagiv
s method�
the resulting SSG is shown in Fig� �� Here� we can see that
the same summary node� �n��� refers to both the elements
belonging to the header list and the ones in the column
linked lists� This way it is impossible to discern between the
two di�erent data structures �header and columns��

Furthermore� the summary node is shared� �is � true��
which means that the summarized nodes are referenced from
the heap more than once� when actually� they are referenced
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by di�erent selectors �nxt� prv�� Therefore� there is no way
to detect that no node is referenced twice by the same se�
lector� Or in other words� the previous graph points out
that the data structure may be cyclic and that there may
be shared elements in di�erent columns� This information�
given in the SSG� prevents the compiler from automatically
generating a parallel code that traverses and updates each
column in parallel�

� A modi�ed shape analysis algorithm

This section focuses on the description of the new techniques
which solve the previous problem� However� before this it
is necessary to brie�y introduce the SSG notation used in
���	��

��� SSG Notation�

An SSG is a �nite� labeled� directed graph that approxi�
mates the actual stores that can arise during program ex�
ecution� The shape�analysis algorithm itself is an iterative
procedure that computes an SSG at every program point�

An SSG SG� consists of two kinds of nodes� variables
�PVar� and shape�nodes� and two kinds of edges� variable�
edges and selector�edges� An SSG is represented by a pair
of edges sets� � E�

v � E
�
s �� where�

� E�
v is the graph
s set of variable�edges� each of which

is denoted by a pair of the form �x� n	� where x � PV ar
and n is a shape�node�

� E�
s is the graph
s set of selector�edges� each of which

is denoted by a triple of the form � s� sel� t � where s
and t are shape�nodes� and sel is a selector�

Shape�nodes are named using a �possibly empty� set of
pointer variables� X� The set shape nodes�SG�� is a subset
of fnX j X � PV arg� A shape�node nX � where X �� �� rep�
resents the cons�cell �storage chunk� pointed to by exactly
the pointer variables in the set X� in any given concrete
store�

The shape�node n� �summary node� can represent mul�
tiple cons�cells of a single concrete store�

Each shape�node n in a SSG has an associated Boolean
�ag� denoted by is��n� �is shared�� When is��n��true�
indicates that the cons�cells represented by n may be the
target of pointers emanating from two or more distinct cons�
cells �elds� On the other hand� is��n��false means that�
if several selector edges in an SSG point to n� they repre�
sent concrete edges that never point to the same cons�cell
in any concrete store� The function is� is therefore of type
shape nodes�SG�� � ffalse� trueg�

Two di�erent shape�nodes nX and nY � such that X �� Y
and X � Y �� �� represent incompatible con�gurations of
variables� Thus� for all � nX � sel�nY �� E�

s � either X � Y

orX�Y � �� The function compatible��nZ� � ����nZk� means
�i� j � Zi � Zj � Zi � Zj � ��

The �Abstract Interpretation� presents the modi�cations
on a SSG for the six kind of statements that manipulate
pointer variables �x �� nil� x�sel �� nil� x �� new� x �� y�
x�sel �� y and x �� y�sel�� E��

v � E��
s and is�� are E�

v � E
�
s

and is� after statement execution�
With all these de�nitions we can move on to the main

part of this section� the description of the new techniques
we propose�

��� Several Summary Nodes

The SSG method ���	 can contain only one summary node�
the one which represents the whole storage chunk in a cer�
tain program point which is not referenced directly by any
variable� However� to improve the data structure represen�
tation in many cases� we allow the existence of more than
one summary node� More precisely� in our SSG there may
be a summary node for each pointer type and connected
component� as we describe now�

����� A Summary Node per pointer type�

If the method is constrained to a single summary node� then
nodes of di�erent structure type may be summarized in a
single node� This way� all of these nodes will have the same
�is shared��is�� attribute� Obviously� �is�� may turn to be
true at a certain program point� but this is less likely to hap�
pen now that the summary nodes are actually representing
less nodes�

For instance� by allowing only one summary node� two
di�erent structures� like the ones we see in �gure Fig� � �a��
are going to be represented by the same summary node�
Fig� � �b�� This way� even when only one of the structures
has several references to the same node� is� becomes true
for the whole summary node� Therefore� there is no way to
know which structure �or if both of them� is actually sharing
elements� This can be solved allowing a summary node for
each di�erent type of structure� as we can see in Fig� � �c��
More precisely� we will consider that two structures have
di�erent type if the pointers pointing to elements of them
have di�erent type in the pointer declaration�

In order to do this� apart from the is� attribute� we as�
sociate to each node the type information �type��� For each
pointer variable we keep its type �type var�� which is taken
from the declaratory part� With all these assumptions�
the abstract semantic of the following statements should be
modi�ed�

�� Statement �x�� new	
The type� of the new node �nfxg� is set to the type�

of the variable that points to it�

type���nfxg� � type var�x�

�� Statement �x�� y	
All the nodes preserve their type� and the new nodes
�now referenced by �x�� take the type of the nodes
pointed to by �y��

type���nZ� � type��nZ�fxg�

�� Statement �x�� y�sel	
A node materialization takes place� The type of the
new node is the same as the type of the node from
which it is materialized�
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type���nZ� � type��nZ�fxg�

�� The summarization of nodes not directly referenced by
pointer variables� varies as well� Now� only nodes of
the same type and not pointed to by any variable can
be summarized�

� During node matching for the union or comparison of
graphs� apart from the set of variables referenced by
the node� it is now also necessary to match their type��
This only a�ects the summary nodes since the others
will have the type� equal to that of the variables which
reference them�

����� A Summary Node per connected component�

With the previous modi�cations we can maintain� for each
graph� di�erent summary nodes for di�erent �types� of struc�
tures� Now� if we deal with several structures of the same
type� the corresponding nodes not directly pointed to by
variables� will be summarized in a single summary node�
Again� it may be of importance to explicitly distinguish
these structures� even when they have the same �type�� For
instance� in Fig�  �a� we can see to di�erent structures which
do not share any element� However� the method proposed
in ���	 leads to the SSG presented in Fig�  �b�� Since there
is a single summary node� there is no way to detect that one
of the structures should have the �is shared� attribute set
to false�

To solve this problem and let the method reach a SSG
like the one presented in Fig�  �c�� each node is annotated
with an additional attribute� the structure to which this
node belongs� structure�� This structure� attribute has
the same value for all nodes connected by a path� More
precisely� we de�ne the set of nodes connected to a given
node �n�� as the set of nodes that can be found in any path
toward or from node �n��

C�Es�	�n� � fnj j 	n�� ���ni�� n� sel�� n� ��
� n�� sel�� n� �� ���� ni� seli��� nj �� � Es��

�� nj� sel�� n� ��� n�� sel�� n� �� ���� ni� seli��� n �� �
Es�g

Again� the abstract semantic of the following statements
is modi�ed�

�� Statement �x�� y	
The graph connectivity does not change for this state�
ment� The new nodes �now pointed to by �x�� will
have the same structure� as the nodes pointed to by
�y��

structure���nZ� � structure��nZ�fxg�

�� Statement �x�sel�� nil	
This statement can break a connected component cre�
ating two new ones�
�nX � x � X�� nX � sel� nZ �� Es��

� if C�Es��	�nX� �C�Es��	�nZ� � � then
�n � C�Es��	�nX��
structure���n� � new structure�
�m � C�Es��	�nZ��
structure���m� � new structure

� if C�Es��	�nX� � C�Es��	�nZ� �� �� structure�

does not change�

When the connected components of the nodes nX and
nZ do not have any node in common� it is clear that
we are actually dealing with two di�erent connected
components� Therefore� the structure� attribute is
changed for all nodes in each of them�

�� Statement �x�sel�� y	
This statement can merge two previously unconnected
components� Since any assignment to �x� or �x�sel� is
always preceded by �x�� nil� or �x�sel�� nil� respec�
tively� this statement cannot break any connection�

�nX � nY � �x�nX 	� �y� nY 	 � Ev���
� nX � sel� nY �� Es��� compatible��nX � nY ��

� �n � C�Es��	�nX���m � C�Es��	�nY �
structure��n� � structure��m� �
new structure

The structure� information will be equal for all nodes
connected to nX and nY � since now they belong to the
same connected component�

�� Statement �x�� y�sel	
This statement does not break any connection in the
graph� The structure� attribute of the new material�
ized node will be the same as the one of the node from
which it is materialized�

structure���nZ� � structure��nZ�fxg�

� Now� during the node summarization� only those nodes
not pointed to by any variable and with the same
structure� attribute� can be summarized in a single
node�
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�� Regarding the node matching� the method also takes
into account that the structure� attributes must match
as well�

��� Share Information per selector

In the original method� each node keeps its own is� at�
tribute� which tells the compiler whether or not the node is
referenced more than once from the heap� However� since
this method does not take into account the selector used to
reach the node� there is a potential lack of accuracy during
the shape analysis� For example� Fig� � �a� shows a doubly
linked list� Even when this list is traversed in a loop only
by selector �nxt� or �prv�� the original method results in a
single summary node with is� � true� Fig� � �b�� In these
kinds of situations� it is very important to keep the shared
attribute for each selector� as we see in Fig� � �c��

Our shape analysis algorithm follows this last approach�
assigning a shared attribute to each selector� Therefore� in
addition to is��n� we also introduce�

is sel��n� sel� � ffalse� trueg

which indicates whether the node �n� is referenced from the
heap more than once by using the selector �sel�� This leads
to a less conservative and more accurate shape analysis for
many data structures�

In order to accomplish these requirements� the abstract
semantic of the following statements needs to be modi�ed�

�� Statement �x�� nil	
The summarized nodes�no longer referenced by �x��
keep their is sel� attributes�

is sel���nZ � seli� �
is sel��nZ � seli� � is sel��nZ�fxg� seli� �seli

�� Statement �x�� new	
When a new node is created� the corresponding is sel�

information is initially set to �false� for all the types
of selectors�

is sel���nfxg� seli� � false �seli

�� Statement �x�� y	
This statement does not change is sel� attribute� since
the connections in the graph are not changed�

is sel���nZ � seli� � is sel��nZ�fxg� seli� �seli

�� Statement �x�sel�� nil	
This statement may break references from node �x� by
selector �sel�� and therefore nodes with is sel��n� sel�
�true� may turn to be �false��

To properly update the is sel� attribute� we de�ne
the following function� iss sel��Es�	�n� sel� �
	nZ�� nZ�� compatible��nZ�� nZ�� n�
 � nZ�� sel� n �

�� nZ�� sel� n �� Es� 
 nZ� �� nZ�

iss sel� becomes �true� for node �n� and selector
�sel� when there are two di�erent nodes nZ� and nZ�
which are compatible �using the compatible�� with
�n� and both of them reference the node �n� by selec�
tor �sel��

We extend the semantic of this statement as follows�
is sel���n� sel� �

� is sel��n� sel� � iis sel��Es��	�n� sel�
if 	nX � �x� nX 	 � Ev�
 � nX � sel� n �� Es�

� is sel��n� sel� otherwise

That is� after breaking references to nodes pointed to
by variable �x� using selector �sel�� we check whether
or not these referenced nodes maintain the shared at�
tribute for selector �sel��

� Statement �x�sel � y	
This statement can change the is sel� information of
the nodes directly pointed to by variable �y�� since
they are going to be referenced by selector �sel� from
the heap�

is sel���n� sel� �

� is sel��n� sel� � iis sel��Es��	�n� sel� if �y� n	 �
Ev�

� is sel��n� sel� otherwise

With the iss sel� function we check if the nodes pointed
to by variable �y� are referenced more than once by
selector �sel�� The others nodes do not change�

�� Statement �x�� y�sel	
The changes induced by this statement are twofold�
First� we note that the is sel� attribute does not change�
However� like in the statement �x�� y	� we need to take
into account the new nodes� which are now pointed to
by variable �x��

is sel���nZ � seli� � is sel��nZ�fxg� seli� �seli
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when a loop traverses the List only by selector �nxt� or �prv�� can we conclude that the same node cannot be visited twice�

On the other hand� the is sel� attribute must be taken
into account during the node materialization in order
to avoid the creation of unnecessary references�

Therefore� we have modi�ed the following functions�

� compat in���y� nY 	�� nY � sel� nZ ��
� nW � sel�� nZ ���

compatible��nY � nZ � nW � 
 �y� nY 	 � Ev�


� nY � sel� nZ ��� nW � sel�� nZ �� Es�

nZ �� nW


��nY �� nW 
 sel � sel�� � is sel��nZ � sel��

Note that in this previous function� we use is sel�

instead of is�� This function� compat in�� is
used to set new references from the already ex�
isting nodes to the materialized one� These new
references are of two types� �a� references from
selector �sel� from nodes pointed to by �y� vari�
able �corresponding to the statement �x�� y�sel	��
and �b� other node references� which are going to
be taken into account only if is sel��nZ � sel� is
true�

� compat self���y� nY 	�� nY � sel� nZ ��
� nZ � sel

�� nZ ���

compatible��nY � nZ� 
 �y� nY 	 � Ev�


� nY � sel� nZ ��� nZ � sel
�� nZ �� Es�


��nY �� nZ 
 sel � sel�� � is sel��nZ � sel��

Similarly to compat in function� we use is sel�

instead of is�� This function creates �self refer�
ences� in the materialized node� In order to do
this� we only consider those references for which
node nZ is shared for selector �sel��

��� Cycle links

In order to reduce the number of unnecessary edges in the
SSG� we assign a new attribute to each node� cyclelinks��
This attribute is actually a set of pairs of references � sel��
sel� �� For a certain node� the pairs in cyclelinks� ful�l the
following property� when taking sel� and sel� subsequently
from this node� the resulting reference points to the origi�
nal node� This set maintains similar information to that of
�identity paths� in the Abstract Storage Graph �ASG� ���	�
which is very useful fo dealing with doubly linked structures�

Again� the following modi�cations of the abstract inter�
pretation are needed�

�� Statement �x�� nil	
This statement may produce the summarization of the

nodes pointed to by variable �x�� When two nodes are
joined� we keep the compatible cyclelinks� of both
of them� A �cycle link� � sel�� sel� � belonging to
cyclelinks��n��� is compatible with cyclelinks��n���
if ��� � sel�� sel� � belongs to cyclelinks��n�� as
well� or ��� the node �n�� does not reference any node
by selector �sel���

cyclelinks���nZ� � f� sel�� sel� � j
� sel�� sel� ��

�cyclelinks��nZ�� cyclelinks
��nZ�fxg���

� sel�� sel� �� cyclelinks��nZ�

�	n�� nZ�fxg� sel�� n �� Es��

� sel�� sel� �� cyclelinks��nZ�fxg�


�	n�� nZ � sel�� n �� Es�g

�� Statement �x�� new	
For this sentence we create a new node with an empty
cyclelinks��

cyclelinks���nfxg� � �

�� Statement �x�� y	
The cyclelinks� of the nodes pointed to by �y� are
preserved� In addition� these nodes are also pointed to
by �x�

cyclelinks���nZ� � cyclelinks��nZ�fxg�

�� Statement �x�sel�� nil	
This statement results in the deletion of some ele�
ments in the cyclelinks� set� First� elements of type
� sel� seli � of cyclelinks��nX � are deleted� where
nX refers to the nodes directly pointed to by the �x�
variable� On the other hand� we also delete elements
� selj� sel � from the cyclelinks��nZ�� where nZ are
the nodes referenced from nX by selector �sel�� For
this case� nZ should reference nX by �selj��

cyclelinks���n� �

� cyclelinks��n�n � sel� seli �

if �x�n	 � Ev�
 � sel� seli �� cyclelinks��n�

� cyclelinks��n�n � selj� sel �
if �x�nX 	 � Ev�
 � nX � sel� n �� Es�


� n� selj� nX �� Es�

� selj� sel �� cyclelinks��n�

� cyclelinks��n� otherwise
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Figure �� �a� Doubly linked list with �cyclelinks�� �b� Shape graph without �cyclelinks� after executing statement �x��
list�nxt�� �c� Shape graph with �cyclelinks� after statement �x�� list�nxt�� Note that in �b� there are two super�uous
references �dashed��

� Statement �x�sel�� y	
This statement may create elements in the cyclelinks�

�nX� and cyclelinks��nY � sets� Here� nX is pointed
to by �x� and nY is pointed to by �y�� Regarding
cyclelinks��nX�� we extend this set with � sel� seli �
elements if nY only points� by selector �seli�� to nodes
directly pointed to by variable �x�� In a similar way�
we include � seli� sel � in cyclelinks��nY ��

cyclelinks���n� �

� cyclelinks��n�� � sel� seli �

if �x�n	� �y� nY 	 � Ev� 
 compatible��n�nY �

� nY � seli� n �� Es�

�	nZ � compatible��n�nZ�� n �� nZ �

� nY � seli� nZ �� Es�

� cyclelinks��n�� � seli� sel �

if �x�nX 	� �y� n	 � Ev� 
 compatible��n�nX�

� n� seli� nX �� Es�

�	nZ � compatible��nX � nZ�� nX �� nZ �
� n� seli� nZ �� Es�

� cyclelinks��n� otherwise

�� Statement �x�� y�sel	
The cyclelinks� of the nodes pointed to by �y�sel� are
preserved� In addition� these nodes are also pointed
to by �x�� The materialized nodes will have the same
set of �cycle links� as the node from which it has been
materialized�

cyclelinks���nZ� � cyclelinks��nZ�fxg�

Once we have applied all these updates in the SSG� it
is necessary to check whether or not the references in
the graph correspond to the information provided by
the cycle links sets� Actually� the method breaks the
references which are not compliant with the cycle links
sets�

Let be

A � fn j ��x� n	 � Ev��� � �� nX � sel� n �� Es����
�� n� sel� nX �� Es���� �x� nX 	 � Ev��g

The new set of selector edges is

Es��� � Es�� n f� n� sel�� nZ �j

n � A�� sel�� sel� �� cyclelinks���n��
� n� sel�� nZ �� Es���� nZ � sel�� n ��� Es��g

In Fig� � we can see an example showing the improve�
ment that can be achieved by the use of cycle links
set� In Fig� � �a� we show a doubly linked list with two
nodes and their corresponding cycle links sets� Figures
� �c� and �b� show the resulting SSG after executing
the sentence �x��list�nxt�� taking the cyclelink infor�
mation into account or not� respectively� We can see
that there are two arti�cial references in case �b�� that
can be avoided by considering the cyclelinks informa�
tion �c�� which leads to more accurate SSG
s�

��� Sparse LU SSG modi�ed

All these previously described techniques have been imple�
mented in a simple compiler which reads C code and returns
the SSG for each program point� The compiler has been
written in C� taking special care over memory management
and in the selection of a proper data structure to store the
SSG�

Our Sparse LU factorization in C is transformed to ful�
�l the normalization assumptions according to the abstract
semantic of the SSG method�

� Only one constructor or selector is applied per assign�
ment statement�

� All allocation statements are of the form x �� new
�x�sel �� new is not allowed��

� In each assignment statement� the same variable does
not occur on both the left�hand and right�hand side�

� Each assignment statement of the form lhs �� rhs
in which rhs �� nil is immediately preceded by an
assignment statement of the form lhs �� nil�

The equivalent statements in C for the six kinds of state�
ment presented before are� x � NULL� x� sel � NULL�
x � allocate��� x � y� x� sel � y and x � y � sel�

The resulting SSG for this code is shown in Fig� �� As we
can see� variable A points to a doubly linked list� summary
node n��� with the shared attribute set to false� Every node
in this list points to a di�erent doubly linked list� represented
by summary node n��� by selector �head�� There are two
summary nodes� because there are two types of pointers
��head list� and �element list���

For all nodes� is sel��n� sel� is �FALSE� for all selectors�
Therefore� we conclude that the �head list� and the �element
list� are acyclic structures when they are traversed by a
single selector type� In addition� we note that there is no
shared node among di�erent �element lists�� With all these
results� it is clear that several sparse matrix columns can be
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Figure �� LU algorithm Shape Graph modi�ed�

updated in parallel during factorization� Furthermore� the
resulting SSG points out that each column �element list� is
acyclic when traversed using a single selector type� So� if
they are actually traversed in this way� it is also possible to
update each column in parallel�

For instance� our sparse data structure is traversed in
our algorithm by using the �nxt� selector� The �prv� se�
lector is only used to simplify the deletion operation of an
entry� In other words� �nxt� can be seen as a �traversing
link� whereas �prv� as a �referencing link�� However� this
�traversing� information should be inferred in a subsequent
compiler stage which uses the SSG to perform the data de�
pendence test step� We do not cover this step yet� but we
will address this topic in the near future�

It is important to note here that the same SSG we see
in Fig� � is achieved in two program points� after the data
structure initialization �initial sparse matrix A� and after
the sparse LU factorization �data structure for the factorized
matrix LU�� In other words� the in�place LU factorization
code does not change the sparse data structure representa�
tion and characteristics�

Compared to the SSG method presented by Sagiv ���	�
we see that our SSG is more accurate than the one they ob�
tain �already presented in Fig� ��� The main reasons leading
to their results are� �a� they can only represent a summary
node in the SSG whereas we can include many of them for
each structure type� �b� their summary node has is� � true
due to the fact that their method is not able to detect that
there is not more than one reference from the heap to each
node by the same selector� Furthermore� by considering the
�is sel� and �cycle links� attributes� we are able to infer that
there are no shared elements in the list� and also we keep the
SSG as accurate as possible avoiding super�uous references�

� Conclusions and future work

In this work� we have implemented a Shape�Analysis algo�
rithm based on the method of Sagiv et al� ���	 �SSG�� and
that of Plevyak et al� ���	 �ASG�� improving the accuracy
and dealing with more complex data structures�

We have validated the implementation of the method
with a real code� the Sparse LU Factorization� for which
we have achieved good results� The resulting shape graph
provides a great deal of information at compile time� Sum�
marizing� this information describes the data structure used
in the algorithm� stating that the columns of the sparse ma�

trix are stored in memory as doubly linked lists which do not
share elements� A subsequent data dependence test phase
would determine that the algorithm traverses the columns of
the reduced submatrix for each k�loop iteration �see Fig� ��
and that each column can be updated in parallel�

This data dependence phase is one of the topics on which
we need to focus next� But �rst� we plan to enhance the
method in order to handle more complex data structures�
like Acyclic Direct Graphs �ADG� where more than one ref�
erence to a node by the same selector may exist� In addi�
tion� we are working to extend the shape analysis algorithm
to make an interprocedural analysis without applying inlin�
ing� Since there are many codes which use recursive calls to
traverse the data structure� this is also an important topic�
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