
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 1

Measuring Improvement when Using HUB Formats
to Implement Floating-Point Systems under

Round-to-Nearest
Javier Hormigo, and Julio Villalba, Member, IEEE

Abstract—This paper analyzes the benefits of using HUB
formats to implement floating-point arithmetic under round-to-
nearest mode from a quantitative point of view. Using HUB
formats to represent numbers allows the removal of the rounding
logic of arithmetic units, including sticky-bit computation. This
is shown for floating-point adders, multipliers, and converters.
Experimental analysis demonstrates that HUB formats and the
corresponding arithmetic units maintain the same accuracy as
conventional ones. On the other hand, the implementation of
these units, based on basic architectures, shows that HUB formats
simultaneously improve area, speed, and power consumption.
Specifically, based on data obtained from the synthesis, a HUB
single-precision adder is about 14% faster but consumes 38% less
area and 26% less power than the conventional adder. Similarly, a
HUB single-precision multiplier is 17% faster, uses 22% less area,
and consumes slightly less power than conventional multiplier. At
the same speed, the adder and multiplier achieve area and power
reductions of up to 50% and 40%, respectively.

Index Terms—floating-point-arithmetic, digital-arithmetic, op-
timization, power-consumption, adders, multiplication

I. INTRODUCTION

THE rounding operation is performed in almost all arith-
metic operations involving real numbers. There are

several ways to perform this operation, although unbiased
rounding-to-nearest has the best characteristics [1][2]. It pro-
vides the closest possible number to the original exact value,
but if the exact value is exactly halfway between two num-
bers, then it is selected randomly. The most commonly used
approach is the tie-to-even method, which is the default mode
of the floating-point IEEE-754 standard (see [3]).

However, the implementation of this rounding mode is
relatively complex, and the area and delay introduced for
rounding circuits may be very large, since they normally lead
in the critical path. For this reason, it is only generally used in
floating-point (FP) circuits. Many researchers have proposed
different architectures to reduce the impact of this delay by
merging rounding with other operations or removing it from
the critical path. For instance, an FP adder was proposed in [4],
such that if the result of an addition is input to another one,
the incrementation required for rounding up is postponed until
the next operation. In [5], a dedicated circuit to compute the
sticky bit in parallel with the main path was proposed with
the aim of accelerating the implementation of multiplication.

The authors are members of the Department of Computer Architecture,
Universidad de Málaga, Málaga E-29071 Spain(e-mail:fjhormigo@uma.es).

This work was supported in part by the Ministry of Education and Science
of Spain under contracts TIN2013-42253-P.

A compound adder (a circuit which, having a carry-save input,
deliverers the results and the result plus one) was proposed in
[6] to generate the rounded result of any operation. In [7],
three different methods were compared for multipliers which
simplify rounding decisions and merge the rounding up with
the computation of the operation. Similarly, [8] proposed
combining rounding with the final addition to convert the
carry-save solution to conventional representation. In [9], a
rounding scheme was presented for high-speed multipliers
based on a rounding table and prediction.

A totally different approach would be to use a new real-
number encoding, in order to simplify the implementation
of round-to-nearest. Thus, the problem would change from
optimizing the rounding operation to dealing with arithmetic
operations under the new number representation. This pro-
posal is found in [10] with Round-to-Nearest representations
(RN-representations) and [11] with Half-Unit Biased (HUB)
formats. Together with other advantages, these new formats
allow performing round-to-nearest simply by truncation. On
the other hand, these new formats are based on simple mod-
ifications of conventional formats and so could be applied to
practically any conventional format. In this article, we focus
on HUB FP formats.

The efficiency of using HUB formats for fixed-point repre-
sentation has been demonstrated in [12] and [13]. By reducing
bit-width while maintaining the same accuracy, the area cost
and delay of FIR filter implementations has been dramatically
reduced in [12], and similarly for the QR decomposition
in [13].

In this article, we perform a quantitative estimation of
the benefit obtained using HUB formats to implement FP
computation systems under round-to-nearest. Some prelimi-
nary results for half-precision FP adders and multipliers were
presented in [14]. This previous work shows that the area and
power consumption of a basic FP adder could be improved
by up to 70% for high frequencies when using HUB formats,
whereas they remain the same for the basic FP multiplier.
In addition to a deeper analysis, in this article we extend
these results to other sizes and circuits, such as converters.
In comparison to previous work, the main contributions of
this article are:

• A detailed architecture for basic adder and multiplier to
deal with HUB numbers

• A study of the conversions between different FP formats
and the corresponding architectures

• The experimental comparison of accuracy between HUB

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/TVLSI.2015.2502318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, , VOL. 6, NO. 1, JANUARY 2007 2

ERN Middle point

1.001 1.0111.1111.011 1.101

E=−2

E=−2 E=−1

HUB format

Conventional format

1.00 1.011.111.101.01

E=−1

Fig. 1. Example of ERNs for a conventional FP format and its HUB version

and conventional formats
• Measures of improvements in area, speed, and power

consumption for single- and double-precision adders,
multipliers, and converters.

The rest of this paper is organized as follows: Section II
reviews the fundamentals of HUB FP formats, focusing on
rounding operations. Section III addresses the architectures for
implementing FP operations under HUB formats, specifically
addition, multiplication, and conversions. In Section IV, we
provide an experimental error analysis to confirm the viability
of using HUB formats instead of classic ones, and also com-
pare the results of the ASIC implementation of a basic adder,
a basic multiplier, and several converters. The conclusions are
presented in Section V.

II. HALF-UNIT BIASED FP FORMATS

A HUB FP format should include a significand that is
represented by using a HUB fixed-point number, and an
exponent that is represented in any conventional way [11].
A HUB fixed-point format is produced when the Exactly
Represented Numbers (ERNs) of a conventional representation
are increased (or biased) by half Unit in the Last Place
(ULP). This shifting of the ERNs could be seen as Implicit
Least Significant Bit (ILSB) set one. For example, the HUB
version of the IEEE-754 single precision has 25 bits for the
significand, where the first and last bits are implicit and equal
one, but only 23 bits are stored, as in the conventional version.

Fig. 1 shows an example for a binary FP format with 3-
bit significand. Given a real value, its representation using
either conventional or HUB formats will produce different
rounding errors, although the accuracy of both format is the
same [11]. In fact, the rounding errors for both formats are
complementary (i.e., the addition of both rounding errors
equals 0.5 ULP).

The main advantage of computing with HUB formats is that
the two’s complement operation is implemented simply by a
bit-wise inversion and rounding-to-nearest by truncation. The
unbiased rounding may require forcing the LSB to zero, when
all discarded bits are zero [11].

III. BASIC OPERATIONS UNDER HUB FORMATS

The general procedure to operate with HUB numbers in-
volves the following steps [11]: Firstly, the ILSB is explicitly
appended to the significand of input operands. Secondly, the
operation is performed in a classic way such that all bits of
the significand result before rounding are obtained. Finally,
the significand is rounded simply by truncation. However,
since the ILSB is a constant value, the datapath could be
further optimized depending on the specific operation. Next,
we develop several architectures to support HUB numbers.
These architectures are adapted from the basic architectures
described in [1]. We are aware that many optimizations to
these architectures have been proposed in the literature, such as
those presented in [15][16][17][18][19][20][21][22][1][2][23].
However, none can be selected as the best, since this selection
depends on many different factors. Even if the more relevant
ones were selected, it would not be possible to review all of
them in this article. Thus, we simply describe the adaptation
of these basic architectures with the aim of their being used
as examples to investigate the implementation of other much
more sophisticated approaches.

Next, we study in detail the architectures to implement
two basic operations, addition and multiplication, and dif-
ferent conversions. For this purpose, let us consider an m-
bit significand including the leading one, which is explicitly
represented to facilitate explanation. In contrast, the ILSB
of the HUB version is not included in m. We focus on the
implementation of the significand path, because the exponent
path remains practically unchanged. We will draw attention to
any modification required.

A. FP Addition for HUB numbers

A basic FP addition for conventional numbers requires
several steps [1], which could be implemented using the
significand data-path shown in Fig. 2(a). Firstly, the operand
exponents (d = Ex − Ey) are compared and the significands
aligned accordingly. The latter is usually performed by right
shifting (|d| bits) the significand corresponding to the number
with the lowest exponent, which is selected using the swap
module and the sign of d. The computation of the sticky bit
corresponding to the bits shifted beyond the precision of the
significand is also performed. The sticky bit is required for
the computation of two’s complement and rounding.

Secondly, either the effective addition or subtraction of the
aligned significands is performed for the m+3 MSBs (the
significand plus guard, round, and sticky bits). In general, in
order to perform the subtraction, the significand corresponding
to the lower exponent is previously one’s complemented using
the significand comparator and the conditional bit inverters.
Moreover, the sticky bit is introduced in the adder to complete
the two’s complement transformation.

The result of the addition has to be normalized by shifting
one bit to the right, if an overflow is produced. Otherwise, it
is shifted to the left if there are leading zeros whose number
is computed in the leading one detector (LOD). Besides
normalization, the result has to be rounded based on the two
LSBs of the result and the sticky bit. However, no roundup is

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/TVLSI.2015.2502318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, , 3

R − SHIFTER

Bit inverter (cond.)Bit inverter (cond.)

m

m
m+2

m+2

m

m−1

m+2

m

m

m m

m

LOD

m−2

SWAP sign(d)

|d|

COMPARATORd=0

STICKY

Two’s complement

a b

ovf
ADDER

c

ROUNDovf_r

L SHIFTER

L1/R1 SHIFTER

Mx My

MUX

Mz

ovf, c0,c1

ovf, c0,c1

(a) Standard

(ILSB)

R − SHIFTER

m m

Bit inverter* (cond.)Bit inverter (cond.)

m

m

m+1

1

1

m+1

m

LOD

m+1

SWAP sign(d)

|d|

Mx My

COMPARATORd=0

Two’s complement

a b

L/R1 SHIFTER

Mz

ovf
ADDER

c

(MSBs)

(ILSB)

(b) HUB

Fig. 2. Basic FP adder architectures for standard (a) and HUB numbers (b).

required when the result has at least two leading zeros [23][1].
Thus, left-shifting and rounding are performed in parallel
paths. On the other hand, the new exponent is also generated
in a parallel path. If the result of addition is rounded up, an
overflow may be produced, which requires a new correction
of the exponent.

The same basic architecture could be used for HUB num-
bers, although the significands are one bit larger and the
rounding circuit is removed. However, knowing that the ILSB
always equals one, the significand data-path is further op-
timized, as shown in Fig. 2(b). The first difference is in
the right-shifter used to align the significands, because the
ILSB has to be included at the input to obtain a correct
result if no shifting is performed. Furthermore, the sticky bit
computation logic has been removed. Given that the ILSBs
of both significands equal one, the sticky bit is always one
for non-aligned significands [11]. Moreover, the sticky bit is
not required for aligned significands because shifting is not
performed.

In this HUB architecture, we should note that the condi-
tional bit inverters directly perform the two’s complement, as
explained in Section II, and no carry input is required in the
fixed-point adder. The conditional inverter at the output of the
right shifter has to be modified to control when shifting is
not performed. In this case, the ILSB is explicitly represented
by the LSB of the output. It then has to be set to one after
the inversion to complete the two’s complement operation (see
Section II).

On the other hand, Fig. 2(b) shows that the ILSB of the
second operand is appended at the corresponding input of
the fixed-point adder. Despite this, the fixed-point adder is
slightly shorter than the one shown in Fig. 2(a). The latter
requires two guard bits and the carry input for the sticky bit

(i.e., m+2 bits) due to the rounding operation. However, in the
HUB approach shown in Fig. 2(b), no guard bits are required
because rounding is performed by truncation. Thus, the fixed-
point adder has only m+1 bits (one additional bit to support
the ILSB). In fact, the ILSB is shown in the architecture to
simplify the explanation although, as presented in [11], this
fixed-point addition can be implemented using an m-bit adder
and an inverter.

Finally, the rounding path (gray in Fig. 2(a)) is removed,
because rounding is simply performed by truncation. Conse-
quently, given that explicit rounding up is not performed for
the HUB architecture, overflow could not occur after rounding.
Thus, the additional correction of the exponent required in
Fig. 2(a) is eliminated, which also simplifies the exponent
data-path.

B. FP multiplication for HUB numbers

A classic FP multiplication is simpler than FP addition [1].
The new exponent is computed by adding the exponents of the
input operands, whereas the significands are multiplied thus
obtaining a value that is double the size. The result of the
multiplication is normalized by shifting it one bit to the right,
if it is required. Finally, the resulting number is rounded to fit
the size of the significand. The rounding requires computing
the sticky of the m-2 LSBs of the result of the fixed-point
multiplication, and the addition of one ULP for rounding it up.
Fig. 3(a) shows the significand data-path of a straightforward
implementation of the conventional FP multiplication.

When HUB numbers are used, the significands again have to
be appended with the hidden ILSB that equals one, as shown
in Fig. 3(b). Thus, the fixed-point multiplier is one bit larger,
which increases the size of the fixed-point multiplier. In con-
trast, the computation of the sticky bit is again prevented [11].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/TVLSI.2015.2502318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, , 4

m−2

Mx My
mm

m

MSB

R1−Shifter

Multiplier

2m

m+2

INC

Sticky

RND

Mz

m

(a) Standard

(ILSB)
1 1

Mx My
mm

2m+1

Mz

m

m+1
MSB

R1−Shifter

Multiplier

(ILSB)

(b) HUB

Fig. 3. Basic FP multiplier for standard (a) and HUB numbers (b).

To simplify the explanation, let us assume that the significand
is scaled such that the ILSB is the only fractional bit. Let us
call the integer part of both input significands A and B. The
product of both significands is then

(A+ 1/2) · (B + 1/2) = A ·B +
1

2
(A+B) + 1/4 (1)

Given the last addend of this result, we conclude that the
LSB of the result of multiplication is always one. Thus, the
sticky bit is always one and no logic is required to compute
it. Moreover, given that the rounding is simply performed by
truncation, the final incrementer is not required (see Fig. 3(b)).
Therefore, as shown in Section IV-B, although the area of the
fixed-point multiplier increases, the overall area decreases.

C. Conversion between FP numbers of different sizes for HUB
numbers

Conversion between FP formats with different sizes is
another operation that could benefit from using HUB formats.
We will focus on the conversion of the significand, since
the conversion of exponent is not affected when using HUB
formats (because HUB FP formats use a conventional number
to represent the exponent).

The conversion from an FP format to another format with
a more narrow significand requires a rounding operation. For
instance, the 53-bit significand of a double precision number
has to be rounded to 24 bits to turn it into a single precision
number. Fig. 4 shows an example of this situation. The
standard round-to-nearest tie-to-even rounding mode would
require computing the sticky bit, determining the need for
rounding up, and incrementing the truncated significand value
if required. These operations involve a considerable amount of
hardware. Moreover, the rounding-up operation may produce
a significand overflow, which would require incrementing the
exponent by one. However, under HUB formats, all these op-
erations are avoided, and a simple truncation of the significand
will produce the correctly rounded conversion. We should note

e

d

n

Round Exp. Comp.
ovf

Mz Ezsign_z

sign_x Mx Ex

n+m

(a) Standard

d

en

Exp. Comp.

Ez

Exsign_x Mx

Mzsign_z

n+m

(b) HUB

Fig. 4. Basic converter from an FP format to a narrower one for standard (a)
and HUB numbers (b).

(I
L

S
B

)

d

e

m

Exp. Comp.

Ezsign_z Mz

10 00

n+m

n

Mxsign_x Ex

(a) Biased

sign_z

sign_x
d

e

Exp. Comp.

Ex

n
x x

n−1
...x

1

n
s s

n−1
...s

1

Mx

EzMz

s ...s
−m+1

...N

s
0 −1 −2

s

(b) Unbiased

Fig. 5. Basic converter for an FP format to a larger one for HUB numbers.

that the ILSB of the original number guarantees that the sticky
bit is always one, which means that the tie case does not exist.

Apart from the dramatic simplification of the conversion
operation, the use of HUB formats prevents the double round-
ing error [11]. This well-known problem may occur when a
number is rounded twice in a row (e.g. when the result of
an arithmetic operation is first rounded to double precision,
and then to single precision). Using standard numbers, this
operation may lead to the final value having an error greater
than 0.5 ULPs. However, this cannot occur when using HUB
numbers[11].

On the other hand, conversion the other way round requires

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/TVLSI.2015.2502318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, , 5

expanding the significand to fit it into the new size. This is a
trivial operation for standard format, because as many zeroes
as needed are appended to the least significant part of the
significand. In relation to HUB formats, a similar solution
could be applied, although the MSB of the bits appended
should be one (the ILSB) instead of zero. This approach is
shown in Fig. 5(a).

Due to the new ILSB of the generated HUB number, the
circuit of Fig. 5(a) produces a rounded tie-to-away significand
because the significand is always rounded up. The error
introduced due to this rounding is negligible, because the
error associated with the original FP number is usually several
order of magnitude greater. For example, the representation of
the value 0.1 under then IEEE-754 single-precision standard
produces an error that equals −1.4901161 × 10−9 assuming
the default rounding mode. When it is extended, the same
amount of error is transferred to the double precision number.
Similarly, the error under the single-precision HUB format is
2.2351743×10−9 which, in this case, is reduced 6.94×10−18

by appending the ILSB of the double-precision HUB number.
It can clearly be seen that this rounding-up operation barely
affects the original error value.

Nevertheless, if this bias is still a problem for certain
applications, another solution is shown in Fig. 5(b). This
approach selects the direction of the rounding based on the
explicit LSB of the input significand. If this LSB is zero, the
significand is extended as in the previous solution; thus, it
is rounded up. If the LSB is one, it is extended with a zero
followed by ones, which actually produces a rounding down
(recall the ILSB set to one of the input significand).

D. Conversion between conventional and HUB formats
The conversion between numbers under a conventional

format and its corresponding HUB format (i.e., both formats
having the same number of explicit bits) may be required
when data are exchanged between systems working in these
different formats. Given that those formats do not share any
ERN (except special cases), this conversion always implies
a rounding and, consequently, a rounding error. In addition,
each ERN of one format is always at the midpoint between
two ERNs of the other format, i.e., it is a tie case. This fact
simplifies the hardware, because the computation of the sticky
bit is not required; however, the magnitude of rounding error
is always 0.5 ULPs.

The conversion from conventional FP format to HUB format
could be performed without any explicit operation. In this
case, given that the HUB format virtually appends the ILSB
to the initial significand, an implicit rounding up of the
magnitude is always produced. Thus, a tie-to-away is actually
produced, because an effective rounding up is obtained for
positive numbers, whereas it is a rounding down for negative
numbers. However, if this tie-to-away behavior is not desired
(for example, when the sign of the input numbers is not equally
distributed), a kind of tie-to-even rounding could be easily
implemented. To do this, the explicit LSB of the significand
(the second LSB, if the ILSB is taken into account) is forced
to zero. In this way, significands which were initially even are
rounded up, whereas the odd ones are rounded down.

TABLE I
EXAMPLES OF CONVERSIONS BETWEEN THE SIGNIFICAND OF HUB AND

CONVENTIONAL NUMBERS

conventional to HUB
conventional tie-to-away tie-to-even

1.011 (1.375) 1.011 (1.4375) 1.010 (1.3125)
1.110 (1.75) 1.110 (1.8125) 1.110 (1.8125)

-1.101 (-1.625) -1.101 (-1.6875) -1.100 (-1.5625)
-1.010 (-1.250) -1.010 (-1.3125) -1.010 (-1.3125)

HUB to conventional
HUB tie-to-zero tie-to-even tie-to-odd

1.001 (1.1875) 1.001 (1.125) 1.010 (1.250) 1.001 (1.125)
1.010 (1.3125) 1.010 (1.250) 1.010 (1.250) 1.011 (1.375)

-1.111 (-1.9375) -1.111 (-1.875) -10.00 (-2.000) -1.111 (-1.875)
-1.110 (-1.8125) -1.110 (-1.75) -1.110 (-1.75) -1.111 (-1.875)

On the other hand, the conversion from HUB FP format
to conventional format could also be performed without any
explicit operation. The ILSB of the significand is virtually
removed and then the magnitude is implicitly rounded down.
Consequently, doing nothing to convert the numbers actually
produces a tie-to-zero rounding. In contrast, producing a tie-
to-even rounding requires much more hardware because it
involves incrementing the number if its LSB equals one (recall
that it is known in advanced that it is a tie case, and thus
no other testing is required). However, tie-to-odd behaves
similarly to tie-to-even rounding mode and it is much easier
to implement simply by setting the LSB of the number to
one. In this way, even numbers are rounded down, whereas
odd numbers are rounded up. Table I shows several examples
of these conversions using a 4-bit significand for different
rounding modes. The numbers between parentheses are the
corresponding decimal values (recall that HUB numbers add
0.5 ULP to the corresponding conventional value).

IV. IMPLEMENTATION RESULTS AND COMPARISON

In this section, we experimentally study the convenience of
using the proposed HUB FP formats to implement real-number
computation. Firstly, we provide an experimental error analysis
to confirm that the use of HUB formats does not damage the
accuracy of the computation. Secondly, we analyze the main
results of the hardware implementation of the proposed HUB
FP circuits compared to the classic implementation.

A. Experimental error analysis

An empirical error study is provided to demonstrate that
HUB formats could be used instead of the IEEE standard in
FP-specific applications, while guaranteeing the same level
of precision. In a first experiment, we tested the arithmetic
operations. In these experiments, we utilized 32 bits two’s
complement fixed-point numbers within the range (−1 1) (i.e.,
one sign bit and 31 fractional bits) as exact real input numbers.
They were converted into an internal 32-bit FP format with
only 24 bits for the significand. Thus, a rounding was required
for said conversion. Two different internal format were tested,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/TVLSI.2015.2502318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, , 6

TABLE II
STATISTICAL PARAMETERS OF ROUNDING ERROR DISTRIBUTION.

Operation: addition
Parameters: min mean max σ

HUB -7.404e-08 -5.1649e-12 7.404e-08 2.0998e-08
IEEE -7.404e-08 2.8433e-12 7.404e-08 2.1346e-08

Operation multiplication
HUB -8.3704e-08 1.7795e-11 8.2135e-08 1.3458e-08
IEEE -8.3168e-08 -1.1068e-11 8.1511e-08 1.3449e-08

Operation Double to single precision conversion
HUB -2.9802e-08 1.4921e-11 2.9802e-08 1.302e-08
IEEE -2.9802e-08 -1.1596e-11 2.9802e-08 1.3008e-08

−1 −0.5 0 0.5 1

x 10
−7

0

0.5

1

1.5

2

2.5
x 10

4

Error

F
re

qu
en

cy

(a) HUB format

−1 −0.5 0 0.5 1

x 10
−7

0

0.5

1

1.5

2

2.5
x 10

4

Error

F
re

qu
en

cy

(b) IEEE standard

Fig. 6. Histogram of the rounding error for the addition experiment.

the standard IEEE-754 single precision and its corresponding
HUB format.

To test the addition operation, two millions exact results
corresponding to the addition of two input real numbers were
calculated by using 32-bit fixed-point arithmetic (excluding the
results which produced overflow). Moreover, the FP results of
adding the same pairs of numbers that were previously con-
verted to single precision FP format were computed for both
the IEEE standard and HUB format. For the former, a standard
CPU was used to perform the computation, whereas for the
latter an FPGA implementation of the HUB adder presented in
SectionIII-A was used. These results were converted back into
fixed-point representation (considered exact in our experiment)
and compared to the exact results obtained using fixed-point
addition.

The calculated error comprises the error in the operation
itself and in conversions. We should note that the values of the
rounding error corresponding to both approaches are always
different. This happens because the value used for representing
the exact real number is different on each internal representa-
tion (see Section II). However, the probability distributions of
these errors are quite similar, as shown by the histogram of
the rounding error for both HUB format and IEEE standard
shown in Fig.6. Moreover, Table II shows the main statistical
parameters corresponding to these errors. It can be seen that
these parameters are very similar when both representations
are compared.

A similar experiment was run for multiplication. Again,
two millions exact multiplication results were compared with
the results obtained with FP internal representation when
using the IEEE standard single precision and its equivalent

−1 −0.5 0 0.5 1

x 10
−7

0

0.5

1

1.5

2

2.5
x 10

5

Error

F
re

qu
en

cy

(a) HUB format

−1 −0.5 0 0.5 1

x 10
−7

0

0.5

1

1.5

2

2.5
x 10

5

Error

F
re

qu
en

cy

(b) IEEE standard

Fig. 7. Histogram of the rounding error for the multiplication experiment.

−4 −2 0 2 4

x 10
−8

0

2000

4000

6000

8000

10000

Error

F
re

qu
en

cy
(a) HUB format

−4 −2 0 2 4

x 10
−8

0

2000

4000

6000

8000

10000

Error

F
re

qu
en

cy

(b) IEEE standard

Fig. 8. Histogram of the rounding error for double- to single-precision
conversion.

HUB format. The input operands were also 32-bit fixed-
point numbers although, in this case, only positive numbers
were used, whereas 64-bit fixed-point arithmetic was used to
calculate the exact multiplication result. Similar to the addition
experiment, although the values of the rounding error for both
representations are different, their statistical parameters are
very similar as shown in Table II and Fig. 7 by the histogram
of the rounding error for both the HUB format and IEEE
standard.

In another experiment, we measured the precision of the
conversion from double to single precision. One million
double-precision real numbers were randomly generated and
converted into single-precision format. They were then con-
verted back into double precision and compared with the
original numbers. As expected, the statistical distributions of
the error for both standard and HUB formats were once again
very similar. Fig.8 shows the histograms of the rounding error
for both approaches and their statistical parameters are shown
in Table II.

The theoretical and experimental results indicate that HUB
formats could substitute for conventional FP representation
to deal with real-number computation. Clearly, the use of
the HUB format to solve real-number calculation would not
provide exactly the same results as those obtained by use of
the IEEE standard, although the accuracy of this calculation
would be the same.

B. Implementation results

To measure the improvements obtained by using the HUB
format and the corresponding circuits, the basic circuits studied
in section III have been described in VHDL and implemented

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/TVLSI.2015.2502318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, , 7

0

10

20

30

40

50

60

70

80

90

100

0

1000

2000

3000

4000

5000

6000

7000

8000

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

A
re
a(
µ
m
²)

Frequency (MHz)

Add‐HUB

Add‐STD

Ratio (%)

(a) Area

0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

P
o
w
e
r
(m

W
)

Frequency (MHz)

Add‐HUB

Add‐STD

Ratio (%)

(b) Power

Fig. 9. Comparison of adder implementations for single precision

targeting ASIC technology. The adders, multipliers, and con-
verters for standard and HUB formats have been implemented
using the Synopsys Design Compiler version Z-2007.03 and
the TSMC 65-nm standard cell library, targeting clock frequen-
cies ranging from 200 MHz to 1.1 GHz in 50-MHz steps. The
area and power consumption of both approaches are compared
for the same clock frequency.

Fig. 9 shows the area and power consumption of the
standard and the HUB adders for single precision. In addition
to the values in absolute terms, the HUB-to-standard ratio is
also represented to facilitate the comparison. It can clearly
be seen that the HUB adder always requires significantly
less area than the standard adder, especially when the clock
frequency increases. Specifically, the HUB adder requires
between around 20% and 50% less area and power than the
standard adder. On the other hand, the maximum frequency
achievable for the standard adder is only 700 Mhz, whereas
it is 800 MHz for the HUB adder. This means that the HUB
adder is 14 % faster than the standard one. Furthermore, if
we consider the fastest implementation in each case, besides
being slower, the standard adder requires 63% more area
and consumes 35% more power (even working at a lower
speed) than the HUB adder. Therefore, the HUB approach
simultaneously increases speed and reduces area and power
consumption.

A similar comparison is provided for double precision
numbers by Fig. 10. Again, an important area and power
consumption reduction is achieved, although a little lower,

0

10

20

30

40

50

60

70

80

90

100

0

2000

4000

6000

8000

10000

12000

14000

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

A
re
a(
µ
m
²)

Frequency (MHz)

Add‐HUB

Add‐STD

Ratio (%)

(a) Area

0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

P
o
w
er
 (
m
W
)

Frequency (MHz)

Add‐HUB

Add‐STD

Ratio (%)

(b) Power

Fig. 10. Comparison of adder implementations for double precision

between 15% and 35%. Regarding the speed, the improvement
is only 8% (650 MHz for HUB adder and 600MHz for
standard one). However, taking the fastest implementation of
both approaches, even being faster, the HUB adder requires
16% less area and consumes 13% less power.

As expected, improvements in the multipliers are less than
in the adders, although they are still very significant.

Fig. 11 shows the area required and the power consumption
for both single-precision multipliers. The improvement is less
than 10% for low frequencies, but becomes very significant
when the frequency increases, achieving up to 38% and 35%
reductions in area and power, respectively. Similar to adders,
the HUB multiplier is 17% faster than the conventional one. If
the fastest implementations of both approaches are compared,
it can be seen that the HUB multiplier requires 22% less area
and consumes slightly less power (2%). Similar behavior can
be seen in the double precision implementation, as shown in
Fig. 12. In this case, both the area and the power reduction
increase 32% and the fastest implementation achieves a speed-
up of 14%, with 12% less area and slightly more power
consumption (2.6%).

Similarly, we also studied the circuits used to convert
between single and double precision. Fig. 13(a) shows the
area required for converting from double to single precision.
It can be observed that the area of the HUB implementation
is practically constant for the ranges of the frequencies tested.
This is because the critical path is very short for this circuit.
In this case, the elimination of the rounding logic dramatically

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/TVLSI.2015.2502318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, , 8

0

10

20

30

40

50

60

70

80

90

100

0

2000

4000

6000

8000

10000

12000

14000

16000

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

1
0
5
0

A
re
a(
µ
m
²)

Frequency (MHz)

Mult‐HUB

Mult‐STD

Ratio (%)

(a) Area

0

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

12

14

16

18

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

1
0
0
0

1
0
5
0

P
o
w
e
r
(m

W
)

Frequency (MHz)

Mult‐HUB

Mult‐STD

Ratio (%)

(b) Power

Fig. 11. Comparison of multiplier implementations for single precision

reduces the area. The circuit for the standard format requires
between 2.5 and 4.4 as much area as the HUB approach.
Regarding power consumption, although this reduction is
slightly less, as shown in Fig. 13(b), it is still very high. The
power consumption of the standard converter is between 2 and
3.6 times greater than the one for the HUB circuit. However,
we should note that the relative impact of these circuits on the
overall area or power is much lower than that on the adder or
multiplier.

In contrast, the conversion from single to double precision is
simpler in the standard approach. Similar to the previous HUB
converter, the critical paths of these converters are too short
to produce significant variations in the area at the frequencies
tested. The standard converter requires 92.88µm2, whereas the
HUB approach with tie-to-away requires 96.12µm2, which
is about 3.5% more area. However, the HUB converter with
tie-to-even-like rounding requires 116.64µm2, which is about
25 % more area. Accordingly, the tie-to-away HUB converter
consumes only 1% more power than the standard converter,
but the other converter requires 75% more power. Clearly the
tie-to-away approach is the preferred solution for these kinds
of conversions, unless this approach cannot be applied due
to application restrictions. In any case, as stated, the area
or power consumption of these circuits is much lower than
arithmetic circuits, and thus their impact is very low.

In summary, the use of HUB FP numbers could significantly
improve the implementation of arithmetic units. In all the
tested cases, except for the converter from single to double

0

10

20

30

40

50

60

70

80

90

100

0

10000

20000

30000

40000

50000

60000

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

A
re
a(
µ
m
²)

Frequency (MHz)

Mult‐HUB

Mult‐STD

Ratio (%)

(a) Area

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

2
00

2
50

3
00

3
50

4
00

4
50

5
00

5
50

6
00

6
50

7
00

7
50

8
00

P
o
w
e
r
(m

W
)

Frequency (MHz)

Mult‐HUB

Mult‐STD

Ratio (%)

(b) Power

Fig. 12. Comparison of multiplier implementations for double precision

precision, HUB units clearly outperform standard units, in
area, speed, and power consumption. Due to the nature of
the improvement, which is based on the simplification of the
FP algorithms themselves, it is expected that the adaptation
of more advanced FP units to HUB numbers should result in
obtaining more efficient circuits. However, we should recall
that since the architectures used in this paper are very basic,
the amount of improvement expected will be probably less
when these more advanced architectures are adapted to HUB
numbers. Therefore, the figures obtained in this study should
be cautiously regarded as the upper bounds of the improve-
ments that can be achieved.

V. CONCLUSION

This article presents a way to simplify FP systems through
the use of HUB formats. When the preferred rounding mode
is round-to-nearest, the implementation of the arithmetic unit
for dealing with HUB FP numbers is much simpler than when
using classic units. The substitution of classic formats for HUB
formats is feasible, given that we have theoretically and ex-
perimentally demonstrated that both approaches have the same
precision assuming the same storage requirements. Using basic
architectures, we have shown how they could be adapted to
support HUB numbers and also shown that the implementation
figures are greatly improved by using HUB circuits. These
results should be intended as a rough approximation of the
improvement achievable for more advanced FP architectures.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/TVLSI.2015.2502318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, , 9

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

300

350

400
A
re
a(
µ
m
²)

Frequency (MHz)

Conv‐HUB

Conv‐STD

Ratio (%)

(a) Area

0

10

20

30

40

50

60

70

80

90

100

0

0,05

0,1

0,15

0,2

0,25

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

P
o
w
e
r
(m

W
)

Frequency (MHz)

Conv‐HUB

Conv‐STD

Ratio (%)

(b) Power

Fig. 13. Comparison of converter implementation from double to single
precision

We should also note that several patent applications have been
filed regarding several HUB circuits.

REFERENCES

[1] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann
Publishers, 2003.

[2] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-
Point Arithmetic. Birkhäuser Boston, 2010, ACM G.1.0; G.1.2; G.4;
B.2.0; B.2.4; F.2.1., ISBN 978-0-8176-4704-9.

[3] IEEE Task P754, IEEE 754-2008, Standard for Floating-
Point Arithmetic. IEEE-STD, Aug. 2008. [Online]. Available:
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

[4] D. T. Matheny, D. V. Jaggar, and D. J. Seal, “Round increment in an
adder circuit,” US Patent 6 148 314, Nov, 2000.

[5] D. R. Lutz and C. N. Hinds, “Data processing apparatus and method
for performing floating point multiplication,” US Patent 7 640 286, 12,
2009.

[6] B. Boswell and K. Menezes, “Interface for performing parallel arithmetic
and round operations,” US Patent 6 055 555, 04, 2000.

[7] G. Even and P.-M. Seidel, “A comparison of three rounding algorithms
for IEEE floating-point multiplication,” Computers, IEEE Trans. on,
vol. 49, no. 7, pp. 638–650, Jul 2000.

[8] N. Burgess, “Prenormalization rounding in IEEE floating-point opera-
tions using a flagged prefix adder,” Very Large Scale Integration (VLSI)
Systems, IEEE Trans. on, vol. 13, no. 2, pp. 266–277, Feb 2005.

[9] N. Quach, N. Takagi, and M. Flynn, “Systematic IEEE rounding method
for high-speed floating-point multipliers,” Very Large Scale Integration
(VLSI) Systems, IEEE Trans. on, vol. 12, no. 5, pp. 511–521, May 2004.

[10] P. Kornerup, J.-M. Muller, and A. Panhaleux, “Performing arithmetic
operations on round-to-nearest representations,” Computers, IEEE Trans.
on, vol. 60, no. 2, pp. 282–291, Feb 2011.

[11] J. Hormigo and J. Villalba, “New formats for computing with real-
numbers under round-to-nearest,” Computers, IEEE Trans. on, vol. PP,
no. 99, 2015.

[12] ——, “Optimizing DSP circuits by a new family of arithmetic opera-
tors,” in Signals, Systems and Computers, 2014 Asilomar Conference
on, Nov 2014, pp. 871–875.

[13] S. D. Muñoz and J. Hormigo, “Improving fixed-point implementation
of QR decomposition by rounding-to-nearest,” in Consumer Electronics
(ISCE 2015), 19th IEEE Int. Symposium on, June 2015, pp. 1–2.

[14] J. Hormigo and J. Villalba, “Simplified floating-point units for high
dynamic range image and video systems,” in Consumer Electronics
(ISCE 2015), 19th IEEE Int. Symposium on, June 2015, pp. 1–2.

[15] S. Oberman, “Design issues in high performance floating point arith-
metic units,” PhD thesis, Standford University, 1996.

[16] G. Gerwig, H. Wetter, E. Schwarz, J. Haess, C. Krygowski, B. Fleischer,
and M. Kroener, “The IBM eServer z990 floating-point unit,” IBM J. of
Research and Development, vol. 48, no. 3-4, pp. 311–322, 2004.

[17] P.-M. Seidel and G. Even, “Delay-optimized implementation of IEEE
floating-point addition,” Computers, IEEE Trans. on, vol. 53, no. 2, pp.
97–113, Feb 2004.

[18] M. Jaiswal, R. Cheung, M. Balakrishnan, and K. Paul, “Unified ar-
chitecture for double/two-parallel single precision floating point adder,”
Circuits and Systems II: Express Briefs, IEEE Trans. on, vol. 61, no. 7,
pp. 521–525, July 2014.

[19] J. Sohn and E. Swartzlander, “Improved architectures for a fused
floating-point add-subtract unit,” Circuits and Systems I: Regular Papers,
IEEE Trans. on, vol. 59, no. 10, pp. 2285–2291, Oct 2012.

[20] E. Quinnell, E. Swartzlander, and C. Lemonds, “Bridge floating-point
fused multiply-add design,” Very Large Scale Integration (VLSI) Sys-
tems, IEEE Trans. on, vol. 16, no. 12, pp. 1727–1731, Dec 2008.

[21] S.-R. Kuang, J.-P. Wang, and H.-Y. Hong, “Variable-latency floating-
point multipliers for low-power applications,” Very Large Scale Integra-
tion (VLSI) Systems, IEEE Trans. on, vol. 18, no. 10, pp. 1493–1497,
Oct 2010.

[22] J. Tong, D. Nagle, and R. Rutenbar, “Reducing power by optimizing the
necessary precision/range of floating-point arithmetic,” Very Large Scale
Integration (VLSI) Systems, IEEE Trans. on, vol. 8, no. 3, pp. 273–286,
June 2000.

[23] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase, K. Mashiko, and
T. Sumi, “Leading-zero anticipatory logic for high-speed floating point
addition,” Solid-State Circuits, IEEE Journal of, vol. 31, no. 8, pp. 1157–
1164, Aug 1996.

PLACE
PHOTO
HERE

Javier Hormigo received an M.Sc and a Ph.D.,
both in Telecommunication Engineering, from the
Universidad de Malaga, Spain, in 1996 and 2000,
respectively. He was a member of the Image and Vi-
sion Department of the Instituto de Optica, Madrid,
Spain, in 1996. He joined the Universidad de Malaga
in 1997 and is currently Associate Professor in
the Computer Architecture Department. His research
interests include computer arithmetic, specific appli-
cation architectures, and FPGA.

PLACE
PHOTO
HERE

Julio Villalba received a B.Sc degree in Physics in
1986 (Universidad de Granada, Spain) and a Ph.D
in Computer Engineering in 1995 (Universidad de
Malaga, Spain). During 1986-1991, he worked in
the R&D Department of Fujitsu Spain and was an
assistant professor. Since 2007, he has been a Full
Professor in the Department of Computer Architec-
ture at the Universidad de Malaga. Currently he is an
Associate Editor of IEEE Trans. on Emerging Topics
in Computing and a steering committee member of
ARITH23. His research interests include computer

arithmetic and specific application architectures.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/TVLSI.2015.2502318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org.

