High performance noise reduction for biomedical
multidimensional data

S. Tabik, E.M. Garzén, 1. Garcia, J.J. Fernandez *

Department of Computer Architecture and Electronics, University of Almeria, Almeria 04120, Spain
Available online 30 November 2006

Abstract

Anisotropic nonlinear diffusion (AND) is one of the most powerful noise reduction techniques in the field of image processing.
This method is based on a partial differential equation (PDE) tightly coupled with a massive set of eigensystems. Denoising
large 3D images in biomedicine and structural cellular biology by AND is extremely expensive from a computational point of
view, with huge memory needs. In this work, high performance computing techniques have been applied to AND. An strategy
for optimal memory usage has been designed, which has allowed a remarkable reduction of the memory requirements. Parallel
implementations of AND have been developed with special focus on clusters of symmetric multiprocessors (SMPs), currently a
dominant platform in high performance computing. Different programming models have been used for the parallelization of AND:
(1) Message-passing paradigm using MPI and (2) a hybrid paradigm that uses message passing among nodes plus the shared
address space paradigm between the processors within the nodes. The parallel approaches have been evaluated on a cluster of dual-
Xeon nodes, a representative example of clusters of SMPs. The conclusion drawn is that the hybrid approach is the most suitable
for the parallelization of AND for this kind of computing platforms.

Keywords: Anisotropic nonlinear diffusion; Image processing; Parallel computing; Symmetric multiprocessors; Message passing;
Distributed shared memory; MPI; Pthreads

1. Introduction

In many disciplines, raw data acquired from instruments are substantially corrupted by noise and sophisticated
filtering techniques are then indispensable for a proper interpretation or post-processing. In general terms, smoothing
techniques can be classified into linear and nonlinear [1]. Standard linear filtering techniques based on local averages
or Gaussian kernels succeed in reducing the noise, but at expenses of poor feature preservation. In other words, they
may severely blur the features as their edges are attenuated. However, nonlinear filtering techniques achieve better fea-
ture preservation as they try to adaptively tune the strength of the smoothing to the local structures found in the image.

Anisotropic nonlinear diffusion (AND) is currently one of the most powerful noise reduction techniques in the
field of image processing [2]. This technique takes into account the local structures found in the image to filter
noise, preserve edges and enhance some features, thus considerably increasing the signal-to-noise ratio (SNR) with
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no significant quantitative distortions of the signal. Pioneered in 1990 by Perona and Malik [3], AND has grown up
to become a well-established tool in the last decade [2,4-6]. AND has already been successfully applied in different
disciplines, such as medicine [7-9] or biology [1,10-12], for denoising multidimensional images. AND has actually
been crucial to achieve some recent breakthroughs [13-16].

The mathematical basis of AND is a partial differential equation (PDE) tightly coupled with a massive set of eigen-
systems [1]. The computational cost of AND may be very high, depending on the size of the images. There are some
disciplines, such as electron tomography of large biological specimens [17,18], where the requirements may be so
huge—much more than 1 Gbyte in size—that high performance computing proves to be essential [19,20]. Therefore,
denoising volumetric reconstructions in electron tomography is a highly expensive computational procedure in terms
of time and memory consumption.

In this work, we describe, analyze and compare several parallel implementations of AND for its application to
denoising large three-dimensional (3D) volumes in biomedicine and structural cellular biology. We focus on parallel
approaches for clusters of symmetric multiprocessors, since they are currently the dominant systems in high perfor-
mance computing laboratories [21]. We have also designed a strategy for optimal memory usage that significantly
reduces the huge memory requirements.

2. Review of anisotropic nonlinear diffusion

AND accomplishes a sophisticated edge-preserving denoising that takes into account the structures at local scales.
AND tunes the strength of the smoothing along different directions based on the local structure estimated at every
point of the multidimensional image. Conceptually speaking, AND can be considered as an adaptive Gaussian filtering
technique in which, for every voxel in the volume, an anisotropic 3D Gaussian function is computed whose widths
and orientations depend on the local structure [22]. This section presents local structure determination via structure
tensors, the concept of diffusion, a diffusion approach commonly used in image processing, details of the numerical
implementation and, finally, our diffusion approach with optimal memory usage.

2.1. Estimation of local structure

The structure tensor is the mathematical tool that allows us to estimate the local structure in a multidimensional
image. Let I(x) denote a 3D image, where x = (x, y, z) is the coordinate vector. The structure tensor of I is a
symmetric positive semi-definite matrix given by
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where I, =0d1/0x, I, =0d1/dy, I, = 31 /07 are the derivatives of the image with respect to x, y and z, respectively.
In practice, for regularization purposes [2], the structure tensor is computed from a smoothed version of the image I,
obtained by convolution with a Gaussian K, with standard deviation o, i.e.,

J(VI) =V, - Vi, " 2
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The eigen-analysis of the structure tensor allows determination of the local structural features in the image [2]:
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Fig. 1. Local structure found by eigen-analysis of the structure tensor. vy, vy, v3 are the corresponding eigenvectors. vy is the direction normal to
the local structure.

The orthogonal eigenvectors vy, va, v3 provide the preferred local orientations, and the corresponding eigenvalues i1,
W2, u3 (assume 1 = wo = w3) provide the average contrast along these directions. The first eigenvector v| represents
the direction of the maximum variance. Therefore, v represents the direction normal to the local feature (see Fig. 1).

2.2. Concept of diffusion in image processing

Diffusion is a physical process that equilibrates concentration differences as a function of time, without creating or
destroying mass. In image processing, density values play the role of concentration. This observation is expressed by
the diffusion equation [2]:

I, =div(D- VI), (6)

where I; = 91/0t denotes the derivative of the image I with respect to the time ¢, VI is the gradient vector, D is a
square matrix called diffusion tensor, and div is the divergence operator:

afy 0

Wy

ay 9z

In AND the smoothing depends on both the strength of the gradient and its direction measured at a local scale [1].
The diffusion tensor D is therefore defined as a function of the structure tensor J:
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where v; denotes the eigenvectors of the structure tensor. The values of the eigenvalues A; define the strength of the
smoothing along the direction of the corresponding eigenvector v;. The values of A; rank from 0 (no smoothing) to 1
(strong smoothing).

Therefore, this approach allows smoothing to take place anisotropically according to the eigenvectors determined
from the local structure of the image. Consequently, AND allows smoothing on the edges: Smoothing runs along the
edges so that they are not only preserved but smoothed. AND has turned out, by far, the most effective denoising
method by its capabilities for structure preservation and feature enhancement [1,2,10,12].

2.3. Edge enhancing diffusion

One of the most common ways of setting up the diffusion tensor D gives rise to the so-called edge enhancing
diffusion (EED) approach [2]. The primary effects of EED are edge preservation and enhancement. Here strong
smoothing is applied along the preferred directions of the local structure (the second and third eigenvectors, v, and v3).
The strength of the smoothing along the normal of the structure, i.e., the eigenvector vy, depends on the gradient: the
higher the value is, the lower the smoothing strength is. Consequently, A; are then set up as

M =g(VIs)),
Ay =1, (®)
AM=1
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with g being a monotonically decreasing function, such as g(x) = 1/y/(1 +x2/K?), where K > 0 acts as a contrast
parameter [2]; structures with |V I, | > K are regarded as edges, otherwise they are considered to belong to the interior
of a region. Therefore, smoothing along edges is preferred over smoothing across them, hence edges are preserved
and enhanced.

2.4. Numerical discretization of the diffusion equation
The diffusion equation (6), can be numerically solved using the standard numerical scheme that is based upon

an explicit finite difference discretization [23]. The term I, = 01 /3t can be replaced by an Euler forward difference
approximation. The resulting explicit scheme allows calculation of subsequent versions of the image iteratively:
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where s is the iteration index, T denotes the time step size, I° denotes the image at time #; = st, the terms I, Iy,
I, are the derivatives of the image I* with respect to x, y, and z, respectively. Finally, the D,,, terms represent the
components of the diffusion tensor D*. The standard scheme to approximate the spatial derivatives (3/0x, d/dy, d/9z)
is based on central differences. For any function g; ; «, these derivatives are given by
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where hy, hy, and h, denote the pixel distance along the x-, y-, and z-directions, and are typically 1. See Appendix A
in [10] for a detailed explanation of the numerical discretization.

In this traditional explicit scheme for solving the PDE in Eq. (6), the stability is an issue [2]. The maximum time
step that is allowed is T < 0.5/Ng, where Ny is the number of dimensions of the problem. In our case, we are dealing
with a three-dimensional problem, so Nq = 3. In the experiments carried out in this work, we used a conservative
value of T = 0.1. As far as the number of iterations is concerned, a range 60—100 iterations is typically used in 3D
problems with that value of t. A detailed analysis of the influence of the parameters on execution times and the quality
in the resulting images can be found elsewhere [1,2,10,12].

On the other hand, the Gaussian kernel used to compute the smoothed version of the image I, has been restricted
in this work to a neighbourhood of radius 1. This extension allows regularization in the computation of gradients and
structure tensors, without significant extension of the global data dependence (see below).

For illustration purposes, Fig. 2 shows the results of the application of 60 iterations of AND, with ¢ = 0.1 and
o = 0.5, to a volume of a mitochondrion, a cell organelle, that was obtained by electron micrscope tomography
[19,20]. Figure 3 shows another example of application of AND, with the same parameters and iterations, to a volume
of Vaccinia virus, the virus used for vaccination against small pox. This latter dataset was obtained by cryoelectron
tomography [16], a technique that is characterized by a extremely low SNR. In both figures, the enhancement in
visualizing the slices of the volumes is apparent.

2.5. Algorithm for diffusion. Optimization of the memory management

In this work, we have implemented AND so that the volume is computed by z-planes, where—without loss of
generality—the z-axis is the direction of the larger image dimension N, > Ny, N,. Note from Eq. (9) that I,f“ is
only a function of I;}_,, I}}, II§+1 and J;_,, J7, Ji+1’ where I denotes the z-plane with index k of the image I°,
and J; represents the structure tensor corresponding to the z-plane with index k computed from the image /°. This
data dependence is illustrated in Fig. 4. Our implementation can thus minimize the memory usage by allocating and
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Fig. 2. Example of denoising with AND. Left: a slice from a volume of a mitochondrion obtained by electron microscope tomography; Right: the
same slice from the volume filtered with anisotropic nonlinear diffusion. Sixty iterations of AND, with t =0.1 and o = 0.5 were used.

Fig. 3. Denoising Vaccinia virus with AND. Left: a slice from a volume of Vaccinia virus obtained by cryoelectron tomography; Right: the same
slice from the volume filtered with anisotropic nonlinear diffusion. Sixty iterations of AND, with t =0.1 and o = 0.5 were used.

computing only the data strictly necessary for updating each single z-plane I,f“. We only use a full-sized volume
where I° is initially stored and that is progressively updated with 7°*!. We then use three auxiliary volumes: first, a
volume of size Ny x Ny x 3 to keep the three z-planes of the original image I}_;, I}, I; | needed to complete the
diffusion process; second, a volume of size Ny x N, x 5 to successively keep the five current Gaussian-smoothed z-
planes of the image [ ; P ; PR/ ; ol ; JRE I ; 42 needed for computation of the structure tensor; finally, a matrix
of size N, x Ny x 3 x 6 to progressively hold the structure tensor J; _;, Ji, J} 41 (note from Eq. (1) that the structure
tensor is made up of 6 components). These three auxiliary volumes act as sliding windows, always keeping the data
needed for computing the updated version I} *1 of the current plane with index k, as sketched in Fig. 4. This strategy
for memory management substantially reduces the requirements of our sequential algorithm compared to standard
strategies, where up to 8 times the size of the input volume is used [10,12].

The proposed sequential algorithm for solving the PDE in Eq. (9) that uses the discretization of the temporal and
spatial derivatives described above and that works by z-planes, then consists of the following steps:

Dos=0,...,n—1
Dok=1,..., N,
/* processing the volume by z-planes */
(1) Compute the structure tensor Jj corresponding to the current z-plane, according to Egs. (1), (2),
and (5).
(2) Compute the diffusion tensor D, from the corresponding entries of J, according to Egs. (7) and (8).
(3) Compute the resulting z-plane of the image I} +oat step (s + 1) from step s by means of Eq. (9).
The resulting z-plane of the image corresponds to the diffusion time #(;41) = (s + 1)7.
End Do
End Do
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Fig. 4. Data dependence to denoise the plane with index k in an iteration of AND. The diffused version of the plane / ,f“ is a function of the
structure tensor and the current version of the image, with a neighbourhood of unit radius using the explicit finite difference discretization and
derivatives approximated by central differences, i.e., I,f“ is a function of Jiq , i, Ji+l and 1,57] , Ilf, 1,f+1 . The structure tensor of every plane
J is computed from the Gaussian-smoothed image I, which involves a neighbourhood of unit radius when central differences are used to compute
the derivatives. Finally, the Gaussian-smoothed planes I, are computed from the current version of the image /¥, with a Gaussian kernel K, where,
in this work, the neighbourhood has been restricted to unit radius. In summary, the neighbourhood required to compute the diffused version of the
plane / ]f *1 has radius equal to three. In this figure, the shadowed boxes sketch the sliding windows that have been devised to optimize the memory

usage by keeping the data strictly needed for computing / ,f +1

where s denotes the index of the iteration and k is the index of the z-plane. The algorithm is executed iteratively for
a number of iterations n. The final image is obtained after a total diffusion time T = nt. Hereinafter, the body of this
nested loop is denoted as I} +1 = AND(J t)- Note that the computation of the structure tensor J; already includes the

Gaussian-smoothing of the corresponding z-planes of the image.
3. Parallel implementation of AND

Large scale high performance systems based on clusters of shared memory multiprocessors (also known as sym-
metric multiprocessors, SMPs) are today’s dominant computing platforms [21,24]. They are made up of nodes
connected by fast interconnection networks (typically 1 Gbit), and the nodes are composed of a number of proces-
sors (typically 2) that share the node memory. In these systems, communications and data exchange can be es-
tablished through the network or/and the shared memory. These architectures support three parallel programming
models:
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(1) Shared address space model inside the nodes, using standards such as Posix threads [25] or OpenMP [26] to
take advantage of the shared-memory feature of the nodes. This model is specially suitable for nodes with a high
number of processors;

(2) Message-passing model, which uses the standard message-passing interface (MPI) [27] for message passing be-
tween different processors inside and between nodes; and finally,

(3) Hybrid model, which combines the two previous models, shared address space model inside nodes and message-
passing model between nodes [28,29].

Several previous works have shown that there is no specific model that can be regarded as the ideal model for all
applications [28,29].

In this work, we present and evaluate parallel strategies for anisotropic nonlinear diffusion for its execution on
clusters of SMPs. One of the aims is to find out the parallel strategy that yields better performance for the AND on
these computing platforms. In particular, this work describes, analyzes and compares two implementations of AND:
(1) MPI based approach, where all communications and data exchange are carried out by message passing and (2)
hybrid strategy, where Pthreads (Posix threads) [25] is used inside the nodes to exploit the shared memory, and MPI
is used between the nodes.

An analysis of the data dependences of AND is essential to develop optimal parallel implementations. As de-
scribed before, 1,f+1 is only a function of J‘,ifl I J‘,‘c+1 and 1,‘:71 s 1,‘:, 1,f+] ; and the structure tensor J* is computed
from the Gaussian-smoothed image I, according to Eq. (2). As a consequence, seven z-planes of the current ver-
sion of the image /° must be read (I}_5, I;_,, I,f_l,IIf,I]fH, I,f+2, I]§+3) to compute five z-planes of smoothed
image 13, three z-planes of structure tensor J and, finally, the diffused plane I *+1 Therefore, the update of a plane
with index k requires a neighbourhood of three planes at each side (k £ 3). Figure 4 shows a sketch of this data
dependence.

The parallel strategies that have been developed here are based on regular 1D domain decomposition: they consist
of distributing the input 3D volume among the processors by blocks of consecutive z-planes, and every processor
then applies the AND algorithm to its own block. This approach based on domain decomposition ensures a stat-
ically balanced computational work among the processors. In order to update the boundary z-planes of its block,
every processor must have access to a neighbourhood of three planes at each boundary. These six additional planes
are just required for the calculations but are not modified, and they are thus referred to as the halo planes of the
block.

3.1. MPI implementation

In the parallel implementation based on the message-passing model, one process is spawned on each processor.
Each processor then updates its own block of z-planes. According to the data dependence of AND, the halo z-planes
of the current version of the image /° must be read to update one block. To avoid excessive communications, each
processor then allocates six additional z-planes to hold the halo planes. Therefore, every processor can update its block
by one iteration of AND without communications. Only one communication point must be included at the end of each
iteration of AND in order to update the halo planes between neighbour processors. This strategy thus involves a total
amount of communicated data of 6 times the size of a z-plane. However, this approach requires extra computation be
carried out by every processor, since two neighbour processors redundantly compute: (a) four (two at each boundary
of the block) Gaussian-smoothed halo z-planes of the block and (b) the structure and diffusion tensors of two (one at
each boundary) halo z-planes of the block.

Figure 5 shows a scheme of this MPI-based approach. Each node is assigned a set of N;OCE‘] planes that are dis-
tributed among their processors. The processors also keep data for the halo z-planes. The processors apply the AND
algorithm to their own block. At the end of each iteration, update of the halo planes takes place by means of point-to-
point MPI communications with the neighbour processors.

An alternative implementation where redundant computation is avoided is possible. Here, every processor only
allocates four (two at each boundary) additional halo z-planes. One communication point must then be included at
the end of each iteration in order to update those z-planes. In addition, the processors must also communicate two
z-planes of the diffusion tensor to their immediate neighbour at the beginning of each iteration. So, this approach only
includes communications, with no redundant computation at all. However, here two communication points between
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Fig. 5. Scheme of the MPI-based approach. All the processors apply the AND algorithm to its own block of z-planes (dark grey), and keep six halo
planes (light grey) for the proper diffusion of the boundary planes of the block. At the end of each iteration, processors then communicate (dotted
arrows) with their neighbours to update the halo planes. In this figure, a node has been considered to be made up of two processors, P; and P; .

neighbours must be included in every iteration, with a total amount of communicated data of 16 times the size of
a z-plane. Therefore, the communication penalty is much higher in this MPI approach. This strategy was evaluated
experimentally under the same conditions and computing platform as described below. The efficiency and scalability
obtained were lower than for the MPI approach described above. Therefore, in this work, we show and analyze results
from the parallel MPI-based approach that includes both redundant computation and communications.

3.2. Hybrid implementation

The hybrid strategy has been designed in such a way that one MPI process is spawned on each node, and the
MPI process then creates as many Pthreads processes as the number of processors in the node. The block of z-planes
assigned to the node will be shared by all the threads running in the node. Every thread updates its own subset of
the block of z-planes. Transparently, the neighbour threads then have their halo z-planes updated thanks to the shared
memory. To ensure consistency of the data throughout the algorithm, an additional structure has been defined to hold
the halo z-planes before the neighbour threads modify them. At the end of the iteration, all the threads running in a
node are joined. The six (three at each boundary) halo z-planes are then exchanged among the immediate neighbour
nodes by MPI point-to-point communications between MPI processes.

Figure 6 shows a scheme of the hybrid approach. Each node is assigned a block of Néocal planes that are distributed
among their processors. The node also keeps data for the halo z-planes. The threads running in the processors apply
the AND algorithm to their own subset of z-planes. At the end of each iteration, the update of the six halo planes of
the block takes place by means of point-to-point MPI communications with the neighbour nodes.

The outline of the hybrid implementation would be as follows:

(1) Distribute 7° among nodes, Néocal planes belong to the block assigned to each node.
2) Dos=0,...,n—1
(a) Each thread initializes its auxiliary data structures.
(b) /* each of the T threads */
Dok=1,..., [(Nleal)/ T
I = AND(/})
End Do
(c) Interchange three halo z-planes between neighbour nodes.
(3) End Do
(4) Collect the image
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Biprocessor node

Nm

Fig. 6. Scheme of the hybrid approach. A node is assigned a block of N, Zlocal planes. The threads running in the processors of the node then apply
the AND algorithm to their own subset of z-planes (dark grey). The node keeps six halo planes (light grey) for the proper diffusion of the boundary
planes in the block. At the end of each iteration, nodes then communicate (dotted arrows) with their neighbours to update the halo planes. In this
figure, a node has been considered to be made up of two processors, P; and P; .

where Ngocal denotes the local number of z-planes of the volume in every node, T is the number of threads running
inside one node, and I° is the original 3D image, n denotes the number of iterations, and AND() represents the
diffusion algorithm.

In this strategy, it is necessary to control the data distribution at two levels: at the node level and at the processor
level inside the node.

(1) The total number of z-planes is distributed among the nodes: N;"Cﬁl = [N,/M] z-planes will be assigned to each
node, where M denotes the number of nodes. The memory of every node also holds the six halo z-planes of the
block. At the end of each iteration, nodes communicate the updated halo planes via message passing.

(2) At processor level, each thread will update its subset of |'NZlocal /T z-planes by applying the AND process.

The computational complexity of these two parallel strategies is O (Ny x Ny x N/ P), where P is the total number
of processors in the system. In message passing, only point-to-point communications among immediate neighbour
nodes/processors are established and the total amount of communicated data is in the order of O (Ny x Ny x P/T).
Similarly, the amount of redundant computations is also in the order of O (N x Ny x P/T). Note that T' takes unit
value for the MPI-based implementation.

4. Evaluation of the parallel implementations of AND

In this section, we evaluate the performance and the scalability of both parallel implementations of the AND
method: MPI-based and the Hybrid, MPI&Pthreads-based approaches. The evaluation has been carried out on a cluster
of SMPs with the following features:

Cluster of 16 symmetric biprocessor nodes, which consists of 32 Intel(R) Xeon(TM) processors running at
3.06 GHz each processor, with 2 GB RAM, 512 KB cache. Nodes are interconnected via two 1 Gbit Ethernet
networks, one for data (NFS) and the other for computation. The architecture of this cluster is based on uniform
memory access (UMA), where every pair of processors in a node have equally fast (symmetric) access to the
memory in the node.

For the hybrid implementation, the number of threads per node T has been fixed to 2, which is the number of proces-
sors per node that share the address space.

Dimensions of volumes in biomedicine and structural cellular biology typically range between 256> and 5123,
although sizes of 10243 or even 2048 are expected in the future. Typical values for n are around 60-100 iterations
with 7 = 0.1, where n is the number of iterations needed to denoise the volume for an acceptable result [1,12]. In
this work, volumes with sizes 256 x 256 x 256 and 512 x 512 x 512 have been tested. For the evaluation of the
performance, five iterations of AND were considered sufficient. The times dedicated to read and write the volume
have not been included in the evaluation process.
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Fig. 7. Speedup of parallel AND with strategies based on (e) MPI and (A) a hybrid one using MPI&Pthreads with 2 threads per node. Speedup
obtained on a 16 dual-Xeon cluster for volume sizes of 256 x 256 x 256 (left) and 512 x 512 x 512 (right) are shown.

The performance of the parallel approaches has been evaluated in terms of speedup and the percentage of communi-
cation and redundant computation times. Speedup is the metric that is most often used to assess parallel performance
and scalability [30]. It is defined as the ratio between the runtimes in the sequential and in the parallel version of
the program. In this work, speedup has been computed to assess the effectiveness of the parallel approaches. The
percentage of communication/redundant computation also provides information about the scalability of the parallel
approaches.

4.1. Speedup

Figure 7 shows the speedup achieved by the MPI based and the hybrid implementations as a function of the number
of processors and for both volume sizes. Clearly, speedup curves show better scalability for increasing volume sizes,
due to the improvement in the ratio computation vs communication/redundancy. This behaviour is justified by the fact
that the computational complexity depends linearly on the volume size whereas the amount of communications and
redundancy is proportional to the size of a single z-slice. Therefore, any increase in the problem size is expected to
imply a direct improvement in the speedup.

From the values of speedup shown, it can be concluded that for the small volume size, both implementations scale
well up to 12-16 processors, approaching ideal linear speedup. However, from 16 processors on, there is a clear
progressive decay of the speedup rate. For the large volume, both implementations exhibit a good scalability up to
higher numbers of processors, i.e., 20-24 processors, with better behaviour for the hybrid one. As seen in Fig. 7, the
hybrid approach clearly outperforms the MPI-based approach throughout the range of processors, and it is specially
evident for increasing number of processors.

4.2. Percentage of communication/redundant computation

As said before, the MPI implementation presented here has two kind of penalties, the communications and the
redundant computation. In order to further analyze the scalability, these penalty runtimes were measured and compared
to the total runtime. These penalties were expected to be more relevant as the number of processors increases in view
of the speedup curves shown above. This hypothesis is confirmed by the results shown in Figs. 8 and 9, which show
the percentage of runtime dedicated to communication and the redundant computation in grey and white, respectively.

The results clearly show that the penalty due to communication is much lower for the hybrid approach than for the
MPI-based one. This situation was already expected since the amount of communications in the hybrid approach is
reduced with respect to that in the message passing one by a factor equal to the number of processors in the nodes. In
the particular cluster where the results have been obtained, the reduction factor is about 2 as can be seen by comparing
the grey columns in Figs. 8 and 9.

As far as the percentage of redundant computation is concerned, the results exhibit a much lower penalty for the
hybrid approach than for the MPI-based one. This was also expected because the amount of redundant computations
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Fig. 8. Percentage of penalty runtimes due to communication (grey) and redundant computation (white) of the MPI-based implementation for
volume sizes of 256 x 256 x 256 (left) and 512 x 512 x 512 (right).
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Fig. 9. Percentage of penalty runtimes due to communication (grey) and redundant computation (white) of the hybrid approach for volume sizes of
256 x 256 x 256 (left) and 512 x 512 x 512 (right).

is reduced by the same factor as in the communication issue. The white columns in Figs. 8 and 9 clearly show an
approximate reduction factor of 2 when comparing the hybrid approach to the MPI-based one.

The fact that the hybrid approach exhibits a lower percentage of both communications and redundant computation
than the MPI-based approach is consistent with the better speedups that have been shown and discussed in the previous
section.

A comparison of the results as a function of the volume size clearly shows that the percentage of redundant com-
putation is significantly reduced for larger volumes. Moreover, the reduction factor is approximately the same for the
hybrid and for the MPI-based approaches. The underlying reason is the significantly higher computational load in the
nodes for larger volumes, compared to the redundant computation. A volume of 512 x 512 x 512 involves an increas-
ing of the computational load of 8 x in all the nodes with regard to that required for a volume of 256 x 256 x 256.
However, the redundant computations only increases in a factor of 4x, as already described in Section 3. Therefore,
any increase in the number of z-planes of the volume will provide a reduction of the percentage of the redundant
computation, hence a improvement of the performance.

However, the behaviour of the communications as a function of the volume size is slightly different. The amount
of communications is in the same order as the redundant computations, as shown in Section 3. However, Figs. 8
and 9 clearly show that the percentage of runtime dedicated to communications does not reduce in the same factor
with the volume size as happened with the redundant computation. This has to do with the computational power of
the processors versus the performance of the network. This behaviour points out that an increase in the redundant
computation at expenses of communication may involve an increase in the performance. This conclusion is expected
to be valid for current and possibly future clusters of SMPs, with fast and powerful processors (2.6-3.0 GHz) and

1 Gbit networks. Nevertheless, it may not apply for clusters of nodes with slower processors or with relatively faster

networks.
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5. Conclusions

In this work, we have applied high performance computing techniques for denoising large 3D volumes with AND.
First we have designed an optimal usage of memory that significantly reduces the huge memory requirements of
the algorithm. Then, we have presented different parallel implementations of AND specially focused on clusters
of SMPs, one of the dominant high performance computing platforms. We have evaluated a strategy based on the
message-passing paradigm and a hybrid approach that combines the message-passing and shared-memory paradigms.
The parallel strategies were based on domain decomposition, with a static balance of the computational load. The
strategies include communications among nodes and an amount of redundant computation. Both parallel approaches
present good levels of scalability, in general. However, it is clear that the hybrid approach that combines message
passing with MPI among the nodes and Pthreads to exploit the shared memory within the nodes is the optimal strategy
for clusters of SMPs. These conclusions are applicable to other domain decomposition parallel applications where
communications among immediate neighbours are involved, such as those related to image processing [20] or based
on the solution of a PDE [23,31].
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