Efficient Data Structure and Highly Scalable
Algorithm for Total-Viewshed Computation

S. Tabik, A. R. Cervilla, E. Zapata, L.F. Romero

Abstract—This work presents an efficient and highly scalable
algorithm, designed from scratch, to calculate total-viewshed in
large high resolution Digital Elevation Models without restric-
tions as to whether or not the observer is linked to the ground.
The keys to the high efficiency of the proposed method are: i)
the selection of a reliable sampling to represent the sub-areas
of study, ii) the use of a compact and stable data structure to
store the calculated data and, iii) the high reutilization of data
and calculation between the large number of viewpoints. The
obtained results demonstrate that the proposed algorithm is the
fastest over the most commonly used GIS-software showing very
similar numerical accuracy.

Index Terms—Total-viewshed computation, Digital Elevation
Model, Data-structure, Scalability.

I. INTRODUCTION

N accurate knowledge of the visible parts of a terrain
is of great interest in telecommunications, environment
planning, ecology, tourism, archeology and so on. For instance,
determining the least number of viewpoints that provide the
maximum visual coverage in a given field would be substan-
tially simplified if we have available the total-viewshed map
of that field (Ben-Shimo et al. 2007, Franklin and Ray 1994).
The terrain is commonly represented by a regular grid
of points called Digital Elevation Model (DEM), where the
longitude and altitude of each point are known with exactitude.
The visible areas from a specific observer situated at a high h
from the ground is called viewshed. To calculate this viewshed,
all the points of the DEM are possible obstacles.

Several algorithms in the literature calculate the viewshed
at one single viewpoint or at most at a small set of observers
(Atallah 1983, De Floriani and Magillo 1994, Hershberger
1989, De Floriani et al. 1989, Cabral and Springmeyer 1987,
Miller 2001, Miller et al. 1995). Besides, the most used GIS-
software, i.e., r.los under GRASS GIS 6.4 (GRASS 2011) and
Viewshed tool under ArcGIS 10 (ESRI 2010) include tools
that calculate the viewshed for small terrains. However, none
of these methods calculate simultaneously the total-viewshed,
i.e., viewshed of all the points of a terrain at once. This
limitation is mainly due to the high complexity of the existing
single-point-methods and also to the fact that the used data-
structures were initially designed for one single observer.

There exist three strategies to make the calculation of total-
viewshed more efficient or simply tractable. The first strategy
consists of optimizing the basic single-point-viewshed method
for specific chip architectures, for multicore (Ferreira et al.

Manuscript received April ??,??; revised December ??, ?7.

2013), for GPUs (Zhao et al. 2013) or by including improved
I0-operations (Fishman et al. 2009). The second strategy
affords the total-viewshed computation by distributing the
N-viewsheds calculation on multiprocessor systems without
optimizing the viewshed kernel (Llobera et al. 2010, Mineter
et al. 2003). While, the third strategy consists of globally re-
thinking and reformulating the total-viewshed problem in a
way that it increases data and calculation reutilization between
a large number of viewpoints. The algorithm proposed in this
paper belongs to third category. It was designed from scratch
to compute the total-viewshed for all the viewpoints simul-
taneously. Indeed, our algorithm is not suitable for single-
point-viewshed calculation since the cost of the proposed
data structure is compensated only when a large number of
observers is involved.

As mentioned above an appropriate total-viewshed algo-
rithm must consider the problem globally to allow an optimal
data and computation reutilization. The first approximation in
this context was introduced by Tabik et al. (Tabik et al. 2012)
based on the following property: if a point P belongs to the
frontier of a visible region of point P’ then P’ belongs to
the frontier of the visible region of P. This algorithm reduces
significantly the computational cost to O(S.N.log(N)), where
S is the number of the considered regions (or sectors) of study,
but it is applicable only to observers linked to the ground.

This paper presents the fastest and most efficient total-
viewshed algorithm for observers located at a high, h > 0,
from the ground. The key ideas of this algorithm are: i) the
selection of reliable sampling points to represent the subareas
of study, ii) the use of a compact and stable data structure to
store the calculated profiles and, iii) the increase of data and
computation reutilization.

The paper is organized as follows. The basis of the proposed
model are provided in Section 2. The selection of the points
that reliably represent the band of sight is analyzed in Section
3. The data structure used to store and calculate the profile
is given in Section 4. Numerical and performance results and
comparisons are given in Section 5 and finally conclusions.

II. BAND OF SIGHT

Commonly, GIS algorithms process DEMs by point, e.g.,
total-viewshed algorithms analyze all the N points of the
terrain to identify the visible points from each point. More
efficient algorithms such as the horizon algorithms described
in (Stewart 1998, Tabik et al. 2011) divide the space into 360
sub-areas or sectors of one degree and find out the horizon of
all the N points in each sector. It is worth noting that the way

prof(Ps)

0y

Fig. 1: The viewshed at point P is calculated in a discrete set
of S directions. The viewshed is the set of visible points in the
profile. Every point P has a profile, prof(P, s), in direction
s constituted by the closest points to this direction.

the sub-areas are defined is crucial for both the accuracy of
the results and the performance of the algorithm. In this work,
we utilize a new type of sub-area of study called band-of-sight
which will be explained in this section.

The viewshed, vs(P), of a point P of the terrain can be
calculated by analyzing the points that belong to a discrete
number, S, of lines of sight that start from P and radiate
outward in S directions, see Figure 1 for illustration. The angle
between successive lines of sight is usually fixed at one degree,
19, as proposed in (Stewart 1998, Tabik et al. 2011). The total
number of lines of sight will be S = 360.

A line of sight can be considered as a statistical sample
of the points comprised in the angular sector of 1° crossed
by s. However, in most cases, the line of sight may contain
very few or no points. To solve this problem, we incorporate
the closest points to the line of sight s into the sample. This
sample of points will be called from here on band of sight,
band(P, s). The points of band(P, s) in the sense 3 together

Fig. 2: The profile prof(P,s) of a point P calculated in a
line of sight s.

—

with the points of band(P, s") in the opposite sense §=-3
form the profile of P, prof(P,s), in direction 3.

prof(P,s) = band(P, s) Uband(P,s")

Figure 2 shows the profile, which includes visible and
nonvisible points, of a point from the city of Malaga, Spain.
The vertical segment indicates the point of view P which
separates the two bands of sight. Notice that the profile has all
necessary information to calculate the viewshed in the band
of sight.

Visible areas in sector s seen from a point P placed at a
height h can be represented by segments or ring-sectors. As

P3=ers(Ps,1)

P=srs(Ps,0) P1= ers(P,s,0)

P2=srs(Ps,1)

Side view:

Zenithal view: H

Fig. 3: Top: side view, a point P placed at a height h sees two
visible segments (blue thick segments), [P, P1] and [P2, P3].
Bottom: zenithal view, P has two visible ring-sectors delimited
by [P, P1] and [P2, P3]. The band of sight is represented by
a thick dashed arrow.

shown in Figure 3, in the side view, P sees two segments,
[P, P1] and [P2, P3], which correspond to two ring-sectors
in the zenithal view. Each visible ring-sector is delimited by
a lower radius or start of ring sector, srs(P,s,i), and an
upper radius or end of ring sector, ers(P,s,i), where ¢ is
the identifier of the ring-sector. The viewshed at a point P
can be calculated as the sum of all the visible ring-sectors us-
ing Algorithm 1. Where RSsur face(srs(P, s, i), ers(P, s,1))

Algorithm 1 Viewshed Calculation
vs(P) =0
fors=1to S do
for i = 1 to nrs(P,s) do
[*Visible ring-sectors in § */
vs(P)+ = RSsur face(srs(P,s,i),ers(P,s,i))

end for
for i =1 to nrs(P,s’) do
[*Visible ring-sectors in sl =—3%
vs$(P)+ = RSsur face(srs(P, s,i),ers(P, s,1))
end for
end for

calculates the surface of the ring-sector, ¢, in sector s, delimited
by the inner and outer radius srs(P,s,i) and ers(P,s,i)
respectively. nrs(P,s) indicates the total number of visible
ring-sectors from P in s. The srs(P,s,i), ers(P,s,4) and
nrs(P, s) are obtained from Algorithm 2 .

Algorithm 2 Calculation of Ring-sectors
for s=1to S do

for P=1to N do
update_profile(band(P, s))

/¥ Calculation of srs(P,s,i), ers(P,s,i) and
nrs(P,s) in §*/

computeRS (band(P, s))

/% Calculation of srs(P,s,i), ers(P,s,i) and

nrs(P,s) in s’ */
computeRS (band(P, s"))
end for
end for

Using the concept of the band of sight reduces the complex-
ity of the viewshed computation from O(N) to O(S - N1/2).
The adequacy of this sampling can be demonstrated by the
fact that i) the roughness of the terrain is random in most
terrains, ii) the band of sight includes abundant information
where it is most required since in practice higher accuracy is
needed in the closer neighborhood around the point-of-view
and iii) applications such as telecommunications require less
accuracy in further distances. Recall that the attenuation of
the waves is proportional to 1/d? while the accuracy of the
proposed viewshed algorithm is proportional to 1/d, where d
is the distance between the point of view and a different point
from the DEM.

The selection of the points that constitute the band of sight
can be based on two assumptions. The first considers that the
band of sight has a fixed geometrical width while the second
considers that the band of sight has a fixed number of points.
Although both methods are very similar, the first option is
more homogeneous statistically while the second option is
more efficient and stable computationally. In this work we
used the second option.

III. DATA LAYOUT AND COMPUTATION OF THE PROFILE

The data structure that implements the profile, prof (P, s),
must contain all the necessary information about the points it
stores. The first characteristic of the profile is that there exists
a central axis that crosses it in one unique point!. This point is
called from here on point of view, PoV/, i.e., the point to which
the viewshed will be calculated. In the data structure, PoV will
have HW points in each sector, in directions & and —75.
Therefore, the band of sight can be characterized by the total
number of points it contains, BW = 2-W 41, and the distance
between each point of the band of sight and PoV'. Actually,
these two parameters are tightly linked. If the band of sight
is very narrow, i.e., it contains a reduced number of points,
then the distance between two points can be approximated by
the difference between their coordinates in the s-axis. On the
contrary, if the band of sight is too wide, the aforementioned
approximation may be incorrect particularly for the points that
are very close to each other?. This situation is analyzed in
detail in Section IV.

The calculations shown along this paper use a grid of N =
2000 %2000 points, with BW = 2001 and HW = 1000 points
in each side of P. Although this work considers regular DEMs,
the results are also valid for non regular grids.

To simplify the generation of the profile prof(P,s) in
direction ¥, we calculate the viewshed in each point of the
terrain following the increasing values of the coordinates in
the s*-axis. See Figure 4. In this way, the set of points that
belong to prof (P, s) will be almost identical to the profile of
the point that has just been processed in the previous iteration.
That is, in each iteration, prof(P, s) inserts a new point from
the +s* side and eliminates an other point in the —s* side.

!(Tabik et al. 2011) demonstrates that for S directions selected appropri-
ately, there is no two points that belong to the same segment.

Notice that the closest points to the considered point of view do not belong
to the sector. Thus, a special processing is applied to them.

Fig. 4: The points of the band of sight are processed in
direction s-. PF, PO, PN and PL, are sentinel nodes. A
video of the way of processing all the points of the DEM can
be viewed in (http://bit.ly/totalvs).

This strategy affects the order in which the iterations of the
inner loop of Algorithm 2 are processed.

The initial setup of the calculation considers that s = 0
corresponds to an initial azimuth =90.001° east, thus, the
points of the band of sight located in the sides s and s°
are candidates to be seen in the east and west respectively
by PoV. The difference 0.001 ensures that no two points
or more would be along the same line since the points of
the DEM are aligned with the cardinal directions. For this
sector, the points are processed from north to south starting
by the point situated in the northeastern corner. See video
(http://bit.ly/totalvs). Processing in this specific order and for
a fixed size of the profile will guarantee:

o All the points included in band(P, s) are consecutive
e In each profile, there is only one different point with
respect to the profile of the last processed point.

Among the BW points of the band of sight, there are five
special points or sentinel nodes (see Figure 4):

e P or PoV: the current point-of-view

e PO: the oldest point inside the band of sight and with
the smallest index or coordinate in s+

e PN: the newest point with the largest index in s

e PL: the farthest point from PoV in direction s

e PF" the farthest point from PoV in direction s°

1

Using this ordering, the viewshed computation at one point
can be substantially simplified as shown in Algorithm 3.

Algorithm 3 is valid once the profile of the previous point
is known. The first and the last HW iterations are treated dif-
ferently. In the first HW iterations, function update_profile()
adds two points per iteration without eliminating any. Whereas
in the last HW iterations, it only eliminates and does not add
any new point. The inner loop of Algorithm 2 can be rewritten
as shown in Algorithm 4.

Algorithm 3 Profile Calculation

/* The profile of the previous point P must be known™*/
Require: prof(P,s)

/* eliminate the oldest point in the band-of-sight */

delete PO

/* insert a new point into the band-of-sight */

insert PO

/* Update PoV in order s**/

P=P+1

identify(PL, PF)

Algorithm 4 Calculation of the viewshed in a sector

for P =0 to N in the direction s* do
if P < HW then
update_profile(band(P, s), init_phase)
else if P >= N — HW — 1 then
update_profile(band(P, s), closing_phase)
else
update_profile(band(P, s), stationary)
end if
computeRS (band(P, s))
compute RS (band(P, s°))
end for

A. The Profile Data Structure

The organization of the points inside the profile data struc-
ture is critical for the performance of our implementation.
Recall that while the points are inserted and deleted in
direction s, the calculation of the visible ring-sectors within
the profile prof(P, s) is performed in directions s and s° for
band(P, s) and band(P, s°) respectively. Therefore, the data
layout must take into account this double reordering in (s, s+)
coordinate system. An appropriate data structure that allows
the analysis of the elements in a non-correlated reordering is
a list doubly linked via an array of nodes, see Figure 5. These
nodes can be ordered in memory either in direction s or s=.

1) Ordering the Nodes in Direction sT: In this case, the
insertion and elimination of a point are performed in one step
by converting the matrix of nodes into a circular list with a
cyclic pointer that indicates the position of the head of the list,
which is the tail at the same time. Otherwise, the calculation of
the profile will need to walk through the links from P to PL in
direction s, and from P to PF’ in the opposite direction, s°. In
this way, the kernel of the algorithm will access the memory in
a disordered way using the links in the linked list. The nodes
of the list are of type struct and contain six elements:

struct node{
node.id /fidentifier of the point
node.d // coordinate in direction s
node.h // elevation of the point
node.os //the order number in direction s
node.next // a pointer to the nearest node in
direction s
node.prevl// a pointer to the nearest node in direction

prev h d next
P|n-1 PN
N s
d
i 1
PO% R h tail
PN z
Y >Pl < ! head
i A
1
i
PF :
o Sinull .9 123
e
7 BESE i
et 4 v
123 PF . i .1 125
/ o
L
125 4 L2 any
: i
! \
PL : :
————>{any, [, \ null
1 \ 3
p v }
>lany Y any

Fig. 5: The data structure that implements the band of sight.
The points are ordered according to their position in memory
from the oldest point, with smaller st coordinate, i.e., PO
(rows shown in lighter color background) to the most recent
point, i.e., PN (rows shown in darker color background). The
point of view P is situated at the center of the circular data
structure. The pointers prev and next maintain the ordering
of the nodes from PF to PL. The points from PF to P
represent the band of sight in s+, band(P, s*) (dashed-line
arrow). The points from P to PL represent the band of sight
in direction s, band(P, s) (dotted-line arrow). A priori, PO,
PN, and the point of insertion, PI, can be in either side, s
or s+, of point P.

o Optimizations
Ordering the nodes in memory in direction s* has the
following disadvantage. Inserting new nodes in the list by
function update_profile(prof) needs to know a priori
where the insertion will be produced. Therefore, it is
necessary to walk along the list to find the exact location
using parameter node.os. This search can be carried
out in the inner loop in Algorithm 2. Alternatively, we
introduced an important optimization in this context by
recalculating once the location of the inserted nodes in

the list. Then, the location of the insertion, PI, or point
of insertion is declared as a new sentinel node in addition
to the five existing ones. The N precalculated points of
insertion are stored in a file and can be reused by any
terrain with identical dimensions.

Indeed, in this work, we calculated the total-viewshed of
the DEM of Andalusia, Spain, composed of 416 square
blocks of dimension 2000 x 2000 points. This means
that 4.000.000 indices of the points of insertion PI are
identical among all the blocks and can be precalculated
once for the first block. In addition, once the point
of insertion is known, it will be unnecessary to store
the parameters node.os and node.id. This will further
simplify the data structure by exclusively storing the
pointers of the linked list of type short integer, the height
h of type unsigned short and, the coordinates node.d of
type float for DEMs of precision 0.1 meters or higher.
This information, of about 20KB, can fit in most L1
caches of most processors.

Finally, it is essential to notice that the efficiency of this
algorithm is based on the stability of the data structure,
namely the size of the band of sight is constant indepen-
dently of the analyzed point and sector. Using a band of
sight of fixed width would introduce a slight irregularity
of negligible impact on the numerical result but with a
significant reduction of the computational cost.

2) Ordering the Nodes in Direction s: In this case, updating
the profile using function computeRS() in Algorithm 2,
which represent the most costly and time consuming part of
the code, will access the memory linearly but for inserting
and eliminating new nodes, they will perform a complete
realocation of the information in memory. The experiments
demonstrate that this organization is less efficient, including
on architectures with L1 data cache of size smaller than the
profile. This is due to the fact that all the benefit obtained
from the lineal access to data memory in the inner loop is
completely hidden by floating point operations.

B. Calculation of Visible Ring-Sectors

The calculation of the visible ring-sectors between P and
PL can be summarized in Algorithm 5. The calculation of
the profile in the opposite direction, s°, is performed using
the same function but traversing the linked list in the opposite
direction, from P to PF using node.prev links.

The final algorithm processes the four nearest points to Pol’
in each band of sight differently due to their proximity and
because the relative deviation with respect to the axis of the
band can affect the quality of the final results. This particularly
affects the initial values such a curr N and the maximum angle
maz in Algorithm 5.

IV. RESULTS

Due to the absence of authentic total-viewshed algorithms
and also to the difficulties of comparing algorithms of different
purposes, we provide in this section a comparison of all the
comparable aspects between our total-viewshed algorithm and
the most commonly used single-point viewshed software. For

Algorithm 5 Calculation of the visible ring-sectors of P in
sector s
Require: computeRS(band(P,s))
d0 = P.d;
h0 = P.h;
bool visible = false
float max = -oco // Max angle
currN = P
while currN! = PL do
currlN = currN.next;
kernel(dg, ho, curr N.d, curr N.h, &mazx, &visible)
end while

Require: kernel(dg, ho, d, h, &mazx, &visible)
float angle = (h — hy))/(d — do);
bool this_visible = angle > max
bool opening = this_visible && lvisible_area
bool closing = !this_visible && visible_area
if opening then
store_srs(d)
nrs[P,s] + +
end if
if closing then
store_ers(d)
end if
visible_area = this_visible
maz = max(angle, max)

100%
m viewshed (ArcMap)
® r.los (GRASS)
60% our method

80%
40%
20%

0%| ||“I||I|I|||.|||I|‘||.|||||..|||||.II||.||I

17

19 "21 123 |25 "27
-20%

Relative difference (%)

-40%

-60%

-80%

-100%

ID of sample points sorted by X

Fig. 6: Comparison of relative difference, in %, between
viewshed tool (ArcMap), rlos (GRASS), and our model with
respect to the mean value of the three models.

the numerical comparisons we analyze the relative difference
values and graphically illustrate one-point-viewshed maps
calculated using all the compared software.

A. Comparisons of Relative Differences

In the first analysis we compare the viewshed of 29 different
points calculated using r.los under GRASS, viewshed tool un-

(a) (b)

(©

(d)

Fig. 7: Viewshed at point UTM (zone 30S) of coordenates, X=368.800 and Y=4.070.140, in a 2000 x 2000-points DEM of
resolution 10 * 10m?2, using (a) the algorithm proposed in this work, (b) the model proposed in (Tabik et al. 2012) (c) r.los

under GRASS and, (d) Viewshed tool under ArcGIS.

der ArcGIS and our method. Notice that 29 is a representative
sample statistically.

Figure 6 compares the relative differences of the three tools
with respect to the mean value calculated as:

Relative dif ference(model;) =

#visible km?(model;) — meanV alue(viewshed, r.los, ours)

meanV alue(viewshed, r.los, ours)

As can be observed in this Figure, the three models provide
similar values for about 69% of the total number of points
with a relative difference € [—20%,4+20%], which can be
considered more than acceptable due to the fact that the
viewshed problem is numerically instable since a slight change
in the position of the observer PolV may produce a huge
change in the size of the viewshed. Usually, in this kind
of problem, differences in the order of 25% are acceptable
(Maloy and Dean 2001). Besides, our algorithm gives the
nearest value to the mean value for point 1. However, the three
models obtain dissimilar values for points 12, 15 and 29. This
can be due to the fact that for very instable viewpoints it may
happen that the nearest elevations outside the considered sector
maybe neglected (Stewart 1998). Due to the instability of the
problem, the calculated viewsheds of these instable points,
using the three tools, correspond in fact to viewsheds of real
points in the closer surrounding area. In consequence, this is
translated into a slight shift, of pixel scale, of these viewpoints
in the final total-viewshed map.

In addition, the impact of different sizes of the band
of sight, BW, on the quality of the numerical results has
been also analyzed. We found that sizes from 50% to 200%
with respect to /N, hardly affect the quality of the results.
However, for values outside this range, the quality of the
results degrades substantially. A deeper study could determine
the optimal size of the band of sight in terms of the angle.
To make this possible, one must contrast real viewshed data
with the calculated ones, which is not feasible (Wechsler and
Kroll 2006). The same problem happens with the number
of sectors S. Therefore, values in [90° 360°] are enough to
ensure reliability of the results without excessively affecting
the performance. Notice that although the complexity of the

calculation is directly proportional to .S, the scalability is not
at all affected by S.

B. Comparisons of the Shape of Viewshed Maps

A comparison of the viewshed calculated at a specific point
in the DEM of Malaga, Spain, using our model, algorithm
(Tabik et al. 2012), r.los under GRASS and, Viewshed tool
under ArcGIS is shown in Figure 7. Where, the visible surface
calculated by our total-viewshed algorithm, algorithm (Tabik
et al. 2012), r.los and, Viewshed is, 8411, 8241, 8583, and
8684 dam? respectively. In general, the four models show very
similar viewshed shapes and numbers.

Figure 8(b) shows the viewshed maps of a block of the DEM
of Andalusia for an observer situated at 2m and Figure 8(c)
the difference between the map shown in Figure 8(b) and a
viewshed map of an observer located at 0 meters from the
ground. These differences are in the order of tens of km?
with a percentage larger then 1000% in smooth regions. This
demonstrates the limitations of the models where the observer
cannot be situated above the terrain.

C. Performance Comparisons

TABLE I: Performance comparison between our total-
viewshed algorithm, the algorithm described in (Tabik et al.
2012), r.viewshed (GRASS) and Viewshed(ArcMap).

[Viewshed tool [[Runtime (seconds) |

Our total-viewshed algorithm 0.0032

(Tabik et al. 2012) 0.0063
r.viewshed (GRASS) 18
Viewshed (ArcMap) 10

This section provides a comparison between our total-
viewshed implementation, r.viewshed (an optimized viewshed
tool under GRASS) and Viewshed (ArcMap) on an Intel(R)
Core(TM)2 Duo Processor E8500. We compare the runtimes
of r.viewshed and Viewshed on one viewpoint versus the
runtime of our algorithm divided by 4.000.000, the total
number of points of the DEM used in the experiments. The
average runtimes of r.viewshed and Viewshed shown in Table 1

(2)

Fig. 8: (a) A DEM of the city of Malaga, Spain, of resolution 10 x 10m?. (b) Viewshed calculated at an observer situated at
2 meters from the ground, where the red and blue colors correspond to high and low visibility respectively. (c) Map of the
difference between the viewshed maps of an observer situated at 2 and 0 meters from the ground.

were measured using 30 viewpoints selected randomly. From
this Table, one can observe that our algorithm is more efficient
than the cited related works. This result corroborates the
fact that total-viewshed algorithms must be redesigned from
scratch and using single-point viewshed algorithms to compute
the total-viewshed is an inefficient strategy.

V. CONCLUSIONS

This work presents an important contribution to the GIS
community, the fastest and most efficient total-viewshed al-
gorithm without restrictions whether or not the observers are
linked to the ground. The key ideas are: i) selecting reliable
sampling points to represent the subareas of study, ii) using a
compact and stable data structure to store the calculated profile
and, iii) increasing data and computation reutilization. These
contributions are not only valid for total-viewshed algorithm
but also for most algorithms that need to sweep a regular map
from a specific angle, such as wavefront methods used in video
codification and axial tomographic reconstruction. The total-
viewshed implementation described in this paper is available
at (www.ac.uma.es/~siham/tvs.tar.gz).

The total-viewshed maps obtained by our algorithm has
been used in a large number of applications. An example of
the total-viewshed from a specific area can be visualized in
(http://bit.ly/totalvs).

ACKNOWLEDGMENT

This work was supported by the Spanish Ministry of Edu-
cation and Science throughout project TIN2010-16144, Junta
de Andalusia through Project TIC-8260.

REFERENCES

[1] M. Atallah (1983) Dynamic computational geometry. Proceeding of the
24th IEEE Symposium on the Foundations of Computer science, 92-99.

[2] Y. Ben-Shimo, B. Ben-Moshe, Y. Ben-Yehezkel, A. Dvir and M. Segal.
(2007) Automated antenna positioning algorithms for wireless fixed-
access networks. Journal of Heuristics, 13(3), 243-263.

[3] B. Cabral, N. Max, and R. Springmeyer. (1987) Bidirectional reflection
functions from surface bump maps. ACM SIGGRAPH Computer Graph-
ics 21, 273-281.

[4] L. De Floriani and P. Magillo. (1994) Visibility Algorithms on Trian-
gulated Terrain Models. International Journal of Geographic Information
Systems, 8(1), 13-41.

[5] L. De Floriani, B. Falcidieno, G. Nagy and C. Pienovi. (1989) Polyhe-
dral Terrain Description Using Visibility Criteria, Institute for Applied
Mathematics, National Resemvh Council, Technical Report (17).

[6] ESRI(Environmental Systems Research Institute). (2010) ARCGIS Soft-
ware. Version 9.3.

[7] R. Franklin and C. K. Ray. (1994) Higher isn’t necessarily better:
Visibility Algorithms and Experiments. Advances in GIS Research: Sixth
International symposium on spatial Data handling, 751-770.

[8] R. Franklin. (2002) Sitting observers on terrain. Symposium on Spatial
Data Handling.

[9] GRASS Development Team. (2011) Geographic Resources Analysis Sup-
port System (GRASS) Software, Version 6.4.1. Open Source Geospatial
Foundation. http://grass.osgeo.org. [Accessed 28/05/2012]

[10] J. Hershberger. (1989) Finding the upper envelope of n line segments
in O(n log n) time, Information Processing Letters, 33(4), 169-174.
[11] M. Llobera. (2003) Extending GIS-based visual analysis: the concept of
visualscapes. International Journal of Geographical Information Science,

17(1), 25-48.

[12] M. Llobera, D. Wheatley, J. Steele, S. Cox and O. Parchment. (2010)
Calculating the inherent visual structure of a landscape (total viewshed)
using high-throughput computing. In Niccolucci, F. & Hermon, S. (Eds.)
Beyond the artifact: Digital Interpretation of the Past, CAA 04. Budapest:
Archaeolingua, 146-151.

[13] M. A. Maloy and D. J. Dean. (2001) An accuracy assessment of
various GIS-based viewshed delineation techniques. Photogrammetric
Engineering and Remote Sensing, 67(11), 1293-1298.

[14] S. P. Wechsler and C. N. Kroll. (2006) Quantifying DEM Uncertainty
and its Effect on Topographic Parameters. Photogrammetric Engineering
and Remote Sensing, 72(9), 1081-109.

[15] D. Miller. (2001) A Method for Estimating Changes in the Visibility of
Land Cover. Landscape and Urban Planning, 54(1), 93-106.

[16] D.R. Miller, N. A. Brooker and A.N.R. Law. (1995) The Calculation
of a Visibility Census for Scotland. In: Proceedings of the ESRI Annual
Conference, May 1995, Redlands. CA. USA. [online]. Available from:
http://bit.ly/tcves [Accessed 28/05/2012]

[17] M. Mineter, S. Dowers, D. Caldwell,and B. Gittings. (2003) High-
Throughput Computing to Enhance Intervisibility Analysis. 7th Interna-
tional Conference on GeoComputation, 1-10.

[18] A.J. Stewart. (1998) Fast Horizon Computation at All Points of a
Terrain With Visibility and Shading Applications. IEEE Transactions on
Visualization and Computer Graphics, 4(1), 82-93.

[19] L. F. Romero, S. Tabik, http://bit.ly/totalvs.

[20] S. Tabik, L.F. Romero and E.L. Zapata. (2011) High Performance Three-
horizon Composition Algorithm for large scale terrains. International
Journal of Geographical Information Science, 25(4), 541-555.

[21] S. Tabik, L. F. Romero and E. L. Zapata. (2012) Simultaneous Compu-
tation of Total-Viewshed on Large High Resolution Grids. International
Journal of Geographical Information Science, In press.

[22] J. Fishman, H. Haverkort, L. Toma. (2009) Improved visibility computa-

tion on massive grid terrains, In Proceedings of the 17th ACM SIGSPA-
TIAL international conference on advances in geographic information
systems, 121-130.

[23] Y. Zhao, A. Padmanabhan, S. Wang. (2013) A parallel computing ap-
proach to viewshed analysis of large terrain data using graphics processing
units, International Journal of Geographical Information Science, 27(2),
363-384.

[24] C.R. Ferreira, M.V.A. Andrade, S.V.G. Magalhes, W.R. Franklin and
G.C. Pena. (2013) A Parallel Sweep Line Algorithm for Visibility Com-
putation, Proceeding of the XIV Brazilian Symposium on Geoinformatics.

