Root mean square calculation of $\boldsymbol{\varepsilon}$

Consider $\boldsymbol{\varepsilon}$, the angle between $\mathrm{P}_{0}(\mathrm{x}, \mathrm{y})$ and $\mathrm{P}_{\mathrm{v}}(\mathrm{x}+\mathrm{dx}, \mathrm{y}+\mathrm{dy})$ as seen from 0 .

Note that $\delta=\alpha-\beta$, and r, the perpendicular projection of v to the observer (red line), is:
$r=v \cdot \sin (\delta)=\sqrt{d x^{2}+d y^{2}} \cdot \sin (\alpha-\beta)$

If d is large and both v and r are small, then $\varepsilon \approx<\tan (\varepsilon)$, and
$\varepsilon \approx \leq \frac{r}{d}=\frac{\sqrt{d x^{2}+d y^{2}} \cdot \sin \left(\arctan \left(\frac{y}{x}\right)-\arctan \left(\frac{d y}{d x}\right)\right)}{\sqrt{x^{2}+y^{2}}}$
The root mean square of ε, in the shadowed area S, of area 1 , using grid step unit, can be analytically evaluated.

$$
r m s=\sqrt{\frac{1}{S} \iint_{S} \varepsilon^{2} d S}
$$

The following Matlab script has been used to integrate the expression:

```
syms x y dx dy
r=sqrt (dx^2+dy^2)*\operatorname{sin}(\operatorname{atan}(y/x)-\operatorname{atan}(dy/dx))
epsilon2=(r/sqrt (x^2+y^2))^2
rms=sqrt (int(int(epsilon2,dx,-0.5,0.5),dy,-0.5,0.5) )
pretty(simple(rms))
```

And finally, the result is:
$r m s=\frac{\sqrt{3}}{6 \cdot d}$

